Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitori...Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitoring content and indicators have been increasing,and the monitoring technology and methods have been improving.This paper mainly analyzes the status of soil and water conservation monitoring in the Yellow River Basin,as well as the construction of the monitoring system and related research,in order to provide a reference for watershed management and development and the scientific research of water and soil conservation.展开更多
The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use typ...The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments.展开更多
Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the ...Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.展开更多
Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is lo...Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is located in mountainous area, the amount of slag abandoned is large, the grade of slag disposal field is high, and the site selection is difficult. On the basis of in Situ deformation monitoring, the slope stability of slag disposal site is calculated by Swedish arc method through the analysis of the scale, grade, site selection, surrounding environment, cut and discharge, blocking and protection design standards of slag disposal site. Under normal and abnormal operating conditions, the slope stability of slag disposal site meets the requirements of the code, and the results of in Situ deformation monitoring verify the calculation results of slope stability of slag disposal site by Swedish circular arc method.展开更多
文摘Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitoring content and indicators have been increasing,and the monitoring technology and methods have been improving.This paper mainly analyzes the status of soil and water conservation monitoring in the Yellow River Basin,as well as the construction of the monitoring system and related research,in order to provide a reference for watershed management and development and the scientific research of water and soil conservation.
基金Supported by Scientific Research Foundation of Wuhan Institute of Technology(16QD24)
文摘The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments.
文摘Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.
文摘Reasonable site selection, blocking to meet design standards, interception and drainage and other protective measures are the basic conditions for not causing disaster in slag disposal site. A hydropower station is located in mountainous area, the amount of slag abandoned is large, the grade of slag disposal field is high, and the site selection is difficult. On the basis of in Situ deformation monitoring, the slope stability of slag disposal site is calculated by Swedish arc method through the analysis of the scale, grade, site selection, surrounding environment, cut and discharge, blocking and protection design standards of slag disposal site. Under normal and abnormal operating conditions, the slope stability of slag disposal site meets the requirements of the code, and the results of in Situ deformation monitoring verify the calculation results of slope stability of slag disposal site by Swedish circular arc method.