A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate ...A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
Soil water retention data are essential for irrigation scheduling and determination of irrigation frequency. However, direct measurement of this characteristic is time consuming and expensive and furthermore its spati...Soil water retention data are essential for irrigation scheduling and determination of irrigation frequency. However, direct measurement of this characteristic is time consuming and expensive and furthermore its spatial and temporal variabilities in field scales increase the number of measurements. Different pedotransfer functions, such as Saxton et al., Campbell, Vereecken et al., l^awls and Brakensiek, WSsten et al., Rajkni et al., Ghorbani Dashtaki and Homaee, Zacharias and Wessolek, and Rosetta, were evaluated to estimate soil water retention of saline and saline-alkali soils collected from south of Tehran, Iran. The saturation-extract conductivity of all the 68 samples and exchangeable sodium percentage of more than half of them were measured to be greater than 4 dS m-1 and 15%, respectively. The calculated Akaike's information criterion values showed that Saxton et al. and Campbell models were the best in estimation of soil water retention curve and total available water, respectively.展开更多
Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0....Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0.25%, and 0.50%), bentonite (0.5%, 1.0%, and 2.5%), and biochar (1.0%, 2.5%, and 5.0%) as soil amendments (weight:weight). Three methods (extended multistep outflow (XMSO), evaporation (EVA), and WP4 dewpoint potentiometer) were used to measure soil hydraulic properties from saturation to oven dryness. The cumulative XMSO results were more uniform across all the applied pressure steps for the amended soils. The EVA exhibited a shorter linear decrease during the first evaporation stage and a lower evaporation rate during the second evaporation stage. The WP4 results also exhibited that soil amendments increased the soil water content of the amended soils at low matric potentials. The results of soil water retention curves revealed that the unamended soil retained less water at any matric potential compared to the amended soils. Soil hydraulic conductivity decreased with increasing amount of soil amendments. The saturated hydraulic conductivity was higher for the unamended soil than the soils amended w计h 2.5% bentonite, 0.50% hydrogel, and 5.0% biochar by 11, 3, and 18 times, respectively. These results suggested that soil amendments improved soil water retentivity, which confirmed the appropriateness of these soil amendments for potential use in sandy soil improvements. However, field experiments and economical perception studies should be considered for further investigation.展开更多
基金This research was supported by National Key Sci-ence and Technology Item in "11th five year" period (No.2006BAD03A1205)Shandong Superior Industrial Item in "Breed-ing and Industrial Exploitation of Superior Liana,Adapting to Afforest-ing Barren Mountain".
文摘A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
文摘Soil water retention data are essential for irrigation scheduling and determination of irrigation frequency. However, direct measurement of this characteristic is time consuming and expensive and furthermore its spatial and temporal variabilities in field scales increase the number of measurements. Different pedotransfer functions, such as Saxton et al., Campbell, Vereecken et al., l^awls and Brakensiek, WSsten et al., Rajkni et al., Ghorbani Dashtaki and Homaee, Zacharias and Wessolek, and Rosetta, were evaluated to estimate soil water retention of saline and saline-alkali soils collected from south of Tehran, Iran. The saturation-extract conductivity of all the 68 samples and exchangeable sodium percentage of more than half of them were measured to be greater than 4 dS m-1 and 15%, respectively. The calculated Akaike's information criterion values showed that Saxton et al. and Campbell models were the best in estimation of soil water retention curve and total available water, respectively.
基金kindly supported by the German Academic Exchange Service (DAAD) grantthe sponsor of the Institute of Geoecology, Technical University of Braunschweig, Germany
文摘Effects of hydrogel, bentonite, and biochar as soil amendments on soil hydraulic properties and improving water availability from saturation to oven dryness were investigated. Soils were mixed with hydrogel (0.10%, 0.25%, and 0.50%), bentonite (0.5%, 1.0%, and 2.5%), and biochar (1.0%, 2.5%, and 5.0%) as soil amendments (weight:weight). Three methods (extended multistep outflow (XMSO), evaporation (EVA), and WP4 dewpoint potentiometer) were used to measure soil hydraulic properties from saturation to oven dryness. The cumulative XMSO results were more uniform across all the applied pressure steps for the amended soils. The EVA exhibited a shorter linear decrease during the first evaporation stage and a lower evaporation rate during the second evaporation stage. The WP4 results also exhibited that soil amendments increased the soil water content of the amended soils at low matric potentials. The results of soil water retention curves revealed that the unamended soil retained less water at any matric potential compared to the amended soils. Soil hydraulic conductivity decreased with increasing amount of soil amendments. The saturated hydraulic conductivity was higher for the unamended soil than the soils amended w计h 2.5% bentonite, 0.50% hydrogel, and 5.0% biochar by 11, 3, and 18 times, respectively. These results suggested that soil amendments improved soil water retentivity, which confirmed the appropriateness of these soil amendments for potential use in sandy soil improvements. However, field experiments and economical perception studies should be considered for further investigation.