As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil phy...As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.展开更多
Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of...Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.展开更多
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This stud...Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.展开更多
To elucidate the dynamics of aluminium(Al),an element potentially toxic and strongly aff ected by acidifi cation processes,in soils,we selected two regions that were similar in relief,soil types,and vegetation cover b...To elucidate the dynamics of aluminium(Al),an element potentially toxic and strongly aff ected by acidifi cation processes,in soils,we selected two regions that were similar in relief,soil types,and vegetation cover but diff ered markedly in their history of acid precipitation:the JizerskéMountains(anthropogenically acidifi ed)and the NovohradskéMountains(naturally acidifi ed)in the Czech Republic.The levels of Al forms(exchangeable and organically bound)associated with diff erent environmental impacts were measured and univalent,divalent and trivalent Al species were quantifi ed using HPLC/IC.Exchangeable and organically bound Al concentrations were higher in the anthropogenically acidifi ed area.Only the concentrations of the leastdangerous species,the univalent,in organic soil horizons were similar for both mountains.The concentrations of exchangeable Al forms were correlated with Ca concentrations and with pH in the organic horizon.The known relationship of Al with soil pH was stronger in the mineral horizons.Relationships of exchangeable Al forms concentrations with sulphur concentrations or even more with the sulphur calcium molar ratio were found only in the JizerskéMountains,not in the Novohradské.Generally,the obtained results support the hypothesis that mechanisms diff ered between natural and anthropogenic acidifi cation.展开更多
The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grass...The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.展开更多
Adsorption isotherms of 2,4-dinitrophenol and 2,4-dichlorophenol on hexadecyltrimethylammonium (HDTMA) bromide modified red soil under different ionic strength, divalent cation Cu 2+ or different pH conditions were st...Adsorption isotherms of 2,4-dinitrophenol and 2,4-dichlorophenol on hexadecyltrimethylammonium (HDTMA) bromide modified red soil under different ionic strength, divalent cation Cu 2+ or different pH conditions were studied. All the adsorption isotherms were well fitted to the Freundlich equation. The adsorption capacities of 2,4-dinitrophenol or 2,4-dichlorophenol were dramatically enhanced by HDTMA treatment of red soil. The increase of ionic strength and the addition of divalent heavy metal cation Cu 2+ significantly enhanced the adsorption of 2,4-dinitrophenol or 2,4-dichlorophenol on the HDTMA-modified red soil. Adsorption capacities of HDTMA-modified red soil for 2,4-dinitrophenol and 2,4-dichlorophenol gradually increased with decreasing pH in the aqueous phase.展开更多
As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions...As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.展开更多
The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevation...The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.展开更多
Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this ...Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this study, the data of BSPs and exchangeable H+, Al3+, Ca2+, Mg2+, K+ and Na+ of 109 and 45 horizon samples of 50 and 28 soil species in red soil and yellow soil groups in the Database of Chinese Soil Species were used to explore further the characteristics of BSPs and exchangeable cations as well as the correlation between BSPs and exchangeable cations. The results showed that the concentrations of exchangeable cations in both red soil and yellow soil groups were in an order of Al3+ (4.55 ± 1.47 and 4.22 ± 1.2 cmol(+)/kg) > Ca2+ (0.32 ± 0.21 and 0.36 ± 0.24 cmol(+)/kg) > H+ (0.23 ± 0.13 and 0.19 ± 0.10 cmol(+)/kg) > K+ (0.16 ± 0.09 and 0.16 ± 0.11 cmol(+)/kg) > Mg2+ (0.13 ± 0.09 and 0.11 ± 0.08 cmol(+)/kg) > Na+ (0.08 ± 0.06 and 0.11 ± 0.06 cmol(+)/kg). For red soil group, Al3+ concentration was significantly higher than those of other exchangeable cations, Ca2+ and H+ concentrations were significantly higher than those of K+, Mg2+ and Na+;while for yellow soil group, Ca2+, H+ and K+ concentrations were significantly higher than those of Mg2+ and K+. BSP of red soil group was codetermined by Ca2+, Al3+, Mg2+ and Na+, with the contributions of 33.81%, 19.82% and 14.49%, respectively;while BSP of yellow soil group was codetermined by Al3+, Ca2+, Mg2+, K+ and Na+, with the contributions of 24.91%, 21.55%, 19.91% and 14.21%, respectively. A higher concentration of exchangeable cation does not mean the higher importance of the cation to soil BSP.展开更多
基金funded by the National Natural Science Foundation of China (40771095,40725010 and 41030746)the Water Conservancy Science and Technology Foundation of Qingdao City,China (2006003)
文摘As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.
基金supported by the Researchers Supporting Program(TUMA-Project-2021-27)Almaarefa University,Riyadh,Saudi Arabia.Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.
基金Project supported by the National Natural Science Foundation of China (Nos. 30590381-03 and 30570350).
文摘Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.
基金Comprehensive Assessment of Soil Contamination Risks for the Quality of Agricultural Products(No.CZ.02.1.01/0.0/0.0/16_019/0000845).
文摘To elucidate the dynamics of aluminium(Al),an element potentially toxic and strongly aff ected by acidifi cation processes,in soils,we selected two regions that were similar in relief,soil types,and vegetation cover but diff ered markedly in their history of acid precipitation:the JizerskéMountains(anthropogenically acidifi ed)and the NovohradskéMountains(naturally acidifi ed)in the Czech Republic.The levels of Al forms(exchangeable and organically bound)associated with diff erent environmental impacts were measured and univalent,divalent and trivalent Al species were quantifi ed using HPLC/IC.Exchangeable and organically bound Al concentrations were higher in the anthropogenically acidifi ed area.Only the concentrations of the leastdangerous species,the univalent,in organic soil horizons were similar for both mountains.The concentrations of exchangeable Al forms were correlated with Ca concentrations and with pH in the organic horizon.The known relationship of Al with soil pH was stronger in the mineral horizons.Relationships of exchangeable Al forms concentrations with sulphur concentrations or even more with the sulphur calcium molar ratio were found only in the JizerskéMountains,not in the Novohradské.Generally,the obtained results support the hypothesis that mechanisms diff ered between natural and anthropogenic acidifi cation.
基金funded by the National Natural Science Foundation of China (41371251,31370009)the National Basic Research Program of China (2011CB403204)
文摘The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.
文摘Adsorption isotherms of 2,4-dinitrophenol and 2,4-dichlorophenol on hexadecyltrimethylammonium (HDTMA) bromide modified red soil under different ionic strength, divalent cation Cu 2+ or different pH conditions were studied. All the adsorption isotherms were well fitted to the Freundlich equation. The adsorption capacities of 2,4-dinitrophenol or 2,4-dichlorophenol were dramatically enhanced by HDTMA treatment of red soil. The increase of ionic strength and the addition of divalent heavy metal cation Cu 2+ significantly enhanced the adsorption of 2,4-dinitrophenol or 2,4-dichlorophenol on the HDTMA-modified red soil. Adsorption capacities of HDTMA-modified red soil for 2,4-dinitrophenol and 2,4-dichlorophenol gradually increased with decreasing pH in the aqueous phase.
基金supported by the National Key Basic Research Program of China (2011CB403204)the Natural Science Foundation of China (31000200)
文摘As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.
基金supported by the National Natural Science Foundation of China (Grants No. 41771051 and No. 41630750)the National Key Basic Research Special Foundation of China (Grants No. 2011FY110300)
文摘The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.
文摘Base saturation percentage (BSP) is an important soil chemical index in soil fertility and soil taxonomy. However, it is still unclear what exchangeable cation dominates BSP of soil in south China. Therefore, in this study, the data of BSPs and exchangeable H+, Al3+, Ca2+, Mg2+, K+ and Na+ of 109 and 45 horizon samples of 50 and 28 soil species in red soil and yellow soil groups in the Database of Chinese Soil Species were used to explore further the characteristics of BSPs and exchangeable cations as well as the correlation between BSPs and exchangeable cations. The results showed that the concentrations of exchangeable cations in both red soil and yellow soil groups were in an order of Al3+ (4.55 ± 1.47 and 4.22 ± 1.2 cmol(+)/kg) > Ca2+ (0.32 ± 0.21 and 0.36 ± 0.24 cmol(+)/kg) > H+ (0.23 ± 0.13 and 0.19 ± 0.10 cmol(+)/kg) > K+ (0.16 ± 0.09 and 0.16 ± 0.11 cmol(+)/kg) > Mg2+ (0.13 ± 0.09 and 0.11 ± 0.08 cmol(+)/kg) > Na+ (0.08 ± 0.06 and 0.11 ± 0.06 cmol(+)/kg). For red soil group, Al3+ concentration was significantly higher than those of other exchangeable cations, Ca2+ and H+ concentrations were significantly higher than those of K+, Mg2+ and Na+;while for yellow soil group, Ca2+, H+ and K+ concentrations were significantly higher than those of Mg2+ and K+. BSP of red soil group was codetermined by Ca2+, Al3+, Mg2+ and Na+, with the contributions of 33.81%, 19.82% and 14.49%, respectively;while BSP of yellow soil group was codetermined by Al3+, Ca2+, Mg2+, K+ and Na+, with the contributions of 24.91%, 21.55%, 19.91% and 14.21%, respectively. A higher concentration of exchangeable cation does not mean the higher importance of the cation to soil BSP.