期刊文献+
共找到9,420篇文章
< 1 2 250 >
每页显示 20 50 100
Field testing of shear strength of granite residual soils
1
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils Shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
下载PDF
Evaluation of the effects of EPS composite soil replacement on the dynamic performance of caisson structure using shaking table tests
2
作者 Gao Hongmei Ji Zhanpeng +3 位作者 Zhang Xinlei Zhang Shushan Wang Zhihua Shen Guangming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期829-843,共15页
The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma... The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure. 展开更多
关键词 EPS composite soil foundation Caisson-type quay wall shaking table test phase difference rotation angle
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
3
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading 被引量:2
4
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test Constitutive model Energy analysis Failure mode
下载PDF
Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test
5
作者 Yunuo Liu Guoqing Lin +3 位作者 Yan Zhang Shenggui Deng Lei Guo Tao Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期146-158,共13页
Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the... Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD. 展开更多
关键词 Huanghe River Delta piezocone penetration test silty soils clay content friction angle soil behaviour type classification
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
6
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
昆明烟区土壤线虫数量与环境因子的Mantel Test分析
7
作者 施锘 李恩星 +9 位作者 陈江政 蒋碧霞 吴思昊 贺艳杰 王戈 王娜 白羽祥 周鹏 杜宇 李杰 《山东农业科学》 北大核心 2024年第10期153-158,共6页
为进一步明确昆明烟区影响线虫的环境因素,于2022年采集云南昆明烟区8个县(市、区)64个乡镇的320个植烟土壤样品,调查与测定样品采集地的海拔、土壤线虫数量以及土壤理化性质(pH值及有机质、水解性氮、速效钾和有效磷含量),并探讨土壤... 为进一步明确昆明烟区影响线虫的环境因素,于2022年采集云南昆明烟区8个县(市、区)64个乡镇的320个植烟土壤样品,调查与测定样品采集地的海拔、土壤线虫数量以及土壤理化性质(pH值及有机质、水解性氮、速效钾和有效磷含量),并探讨土壤线虫数量与植烟土壤环境因子之间的潜在关系。结果表明,昆明烟区土壤线虫数量一定程度上受到海拔及土壤理化性质的影响,海拔与有机质、水解性氮和速效钾呈显著正相关,pH值与有效磷呈极显著负相关,相关系数为-0.850;土壤线虫数量与土壤有效磷呈正相关,与海拔、pH值、有机质、水解性氮、速效钾呈负相关,其中与海拔、有机质和水解性氮的相关系数较大,分别为-0.751、-0.651和-0.568。通过Mantel test分析确定海拔、有机质和水解性氮含量是影响昆明烟区土壤线虫数量的重要因子。本结果可为有效防治土壤线虫提供科学依据。 展开更多
关键词 土壤线虫 海拔 土壤理化特性 Mantel test分析
下载PDF
Using Piezocone Tests for Analysis of Phreatic Water Conditions and Prediction of Soil Behavior in Tailing Dams
8
作者 Dante René Bosch Rubén Rafael Sotelo Fernando María Mántaras 《Journal of Geoscience and Environment Protection》 2023年第5期186-196,共11页
In this work the possibility of identifying two important aspects in the process of adopting soil parameters for calculating stability analysis models in tailing dams is discussed. The use of commercial computer progr... In this work the possibility of identifying two important aspects in the process of adopting soil parameters for calculating stability analysis models in tailing dams is discussed. The use of commercial computer programs for stability calculations allows obtaining numerically exact results. Its representativeness, however, will be linked to the correct definition of the phreatic regime and to the prediction of volumetric soil behavior during shearing (contractile vs. dilating materials). The theoretical principles for the selection of soils parameters for different failure models are briefly presented. Also, how the incorrect assumptions regarding material behavior can significantly affect the estimation of tailing dams’ stability. The results of CPTu tests for the diagnosis of the phreatic and mechanical condition of the materials are discussed and two examples are presented to remark on the care that should be taken to avoid incorrect soils parameters adoption. 展开更多
关键词 CPTu Piezocone Dissipation test soil Behaviour Shear Strength Tailing Dams
下载PDF
Comparison of Vs and SPT Soil Liquefaction Assessments of NCEER: Including Hypothesis Testing
9
作者 Min-Hao Wu Jui-Pin Wang Chih-Kun Liao 《International Journal of Geosciences》 2023年第11期1085-1099,共15页
Soil liquefaction is one of the complex research topics in geotechnical engineering and engineering geology. Especially after the 1964 Niigata earthquake (Japan) induced many soil liquefaction incidents, a variety of ... Soil liquefaction is one of the complex research topics in geotechnical engineering and engineering geology. Especially after the 1964 Niigata earthquake (Japan) induced many soil liquefaction incidents, a variety of soil liquefaction studies were conducted and reported, including the liquefaction potential assessment methods utilizing the shear wave velocity (V<sub>s</sub>) or SPT-N profiles (SPT: standard penetration test). This study used the V<sub>s</sub> and SPT methods recommended by the National Center for Earthquake Engineering Research (NCEER) to examine which is more conservative according to the assessment results on 41 liquefiable soil layers at sites in two major cities in Taiwan. Statistical hypothesis testing was used to make the analysis more quantitative and objective. Based on three sets of hypothesis tests, it shows that the hypothesis—the SPT method is more conservative than the V<sub>s</sub> method—was not rejected on a 5% level of significance. 展开更多
关键词 soil Liquefaction Standard Penetration test Shear Wave Velocity Hypothesis testing
下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
10
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
11
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope Stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Performance evaluation of laterite soil embankment stabilized with bottom ash,coir fiber,and lime
12
作者 Yunusa Hamdanu SANI Amin EISAZADEH 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2334-2351,共18页
In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.... In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides. 展开更多
关键词 Lateritic soil Bottom ash Coir fiber LIME Unconfined compressive strength PERMEABILITY FESEM/EDS Rainfall simulation tests
下载PDF
Analysis on the development of chemically-improved soil in railway engineering
13
作者 Feng Chen Zhongjin Wang +1 位作者 Dong Zhang Shuai Zeng 《Railway Sciences》 2024年第2期216-226,共11页
Purpose-Explore the development trend of chemically-improved soil in railway engineering.Design/methodology/approach–In this paper,the technical standards home and abroad were analyzed.Laboratory test,field test and ... Purpose-Explore the development trend of chemically-improved soil in railway engineering.Design/methodology/approach–In this paper,the technical standards home and abroad were analyzed.Laboratory test,field test and monitoring were carried out.Findings–The performance design system of the chemically-improved soil should be established.Originality/value–On the basis of the performance design,the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality. 展开更多
关键词 DURABILITY DEFORMATION Engineering properties Chemically-improved soil Performance design test method
下载PDF
Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism 被引量:6
14
作者 WANG Zhuang LI Chi DING Xuan-ming 《Journal of Mountain Science》 SCIE CSCD 2019年第4期935-943,共9页
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil... When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism. 展开更多
关键词 SLOPE engineering TRANSPARENT soil Model test INTERFACIAL SLIDING MECHANISM
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:5
15
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 soil ROCK MIXTURE SLOPE stability SLOPE FAILURE CENTRIFUGE model test
下载PDF
Strength and deformation behaviour of coarse-grained soil by true triaxial tests 被引量:7
16
作者 施维成 朱俊高 +1 位作者 赵仲辉 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2010年第5期1095-1102,共8页
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ... In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies. 展开更多
关键词 cohesionless soil coarse-grained soil true triaxial test STRENGTH DEFORMATION failure criterion
下载PDF
Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests 被引量:3
17
作者 陈晓斌 张家生 +1 位作者 刘宝琛 唐孟雄 《Journal of Central South University》 SCIE EI CAS 2008年第S1期397-401,共5页
In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,... In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments. 展开更多
关键词 stress conditions GRANULAR soil CREEP LARGE TRIAXIAL rheology test redstone GRANULAR soil final CREEP deformation
下载PDF
Grassland Evolution Under Soil Degradation: Numerical Simulation and Test 被引量:9
18
作者 QIXiang-Zhen LINZhen-Shan 《Pedosphere》 SCIE CAS CSCD 2005年第1期41-45,共5页
Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different... Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different degrees of soil degradation was applied to field data in order to probe the dynamic processes and mechanisms of vegetation evolution due to the effects of the soil's ecological deterioration on grassland vegetation. Comparisons were made between the theoretical results and the practical surveys with satisfactory results. 展开更多
关键词 grassland evolution numerical simulation soil degradation test
下载PDF
Physical simulation test of soil-rock mixture from synthetic transparent soil 被引量:7
19
作者 DING Xiao-hua ZHOU Wei +1 位作者 LU Xiang GAO Yan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3085-3097,共13页
The waste dump of open-pit coal mine is remade of soil-rock mixture under the action of gravity,dynamic load of transportation equipment and earthquake,etc.By using artificial synthetic transparent soil,the developing... The waste dump of open-pit coal mine is remade of soil-rock mixture under the action of gravity,dynamic load of transportation equipment and earthquake,etc.By using artificial synthetic transparent soil,the developing process and migration law for soil-rock mixture are observed in the remade process.The mixture of fused quartz sand,liquid paraffin and n-tridecane is chosen as the material for synthetic transparent soil which is mixed with liquid paraffin and n-tridecane at a mass ratio of4.4at room temperature of17℃.Physical and mechanical properties of transparent soil are determined by physical test and compared with those in natural sandy soil.The results show that transparent soil and sandy soil have high similarity,in other words,transparent soil can be used for similar simulation experiments of soil-rock mixture. 展开更多
关键词 transparent soil waste dump soil-rock mixture physical test
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:4
20
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 Reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING STEEL STRIP Seismic behaviors 1-g SHAKING table test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部