期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on Food-making Quality of Strong-gluten Wheat Varieties from Lime Concretion Black Soil Area in the Huanghuai Wheat Region 被引量:1
1
作者 刘爱峰 程敦公 +4 位作者 李豪圣 宋健民 曹新有 赵振东 刘建军 《Agricultural Science & Technology》 CAS 2016年第6期1429-1431,1445,共4页
In this study, 13 strong-gluten wheat varieties screened by the Key Project of Modern Agricultural Industry Technology System "Study on Industrial Technology for Strong-gluten Wheat from Lime Concretion Black Soil Ar... In this study, 13 strong-gluten wheat varieties screened by the Key Project of Modern Agricultural Industry Technology System "Study on Industrial Technology for Strong-gluten Wheat from Lime Concretion Black Soil Area in the Huanghuai Wheat Region" were used as experimental materials to investigate their bread-making quality, noodle-making quality and other related characteristics. The results showed that more than half of the wheat varieties had better bread-making quality; the bread made from wheat with longer dough mixing time than 3.0 min had better texture, lighter color, and better taste. All these 13 strong-gluten wheat varieties showed good noodle-making quality in color, appearance, smoothness and taste; the differences between varieties were mainly found in palatability and viscoelasticity. Jimai 20, Xinong 979, Zhengmai 7698, Ji'nan 17 and Zhengmai 9023 exhibited excellent bread-making quality; Zhengmai 366, Jimai 20 and Xinong 979 displayed excellent noodle-making quality. Fresh dough sheets made from Zhengmai 366, Jimai 20 and Xinong 979 exhibited slight color variation within 24 h and high peak starch paste viscosity; dry and cooked noodles made from Zhengmai 366, Jimai 20 and Xinong 979 had good quality. 展开更多
关键词 Lime concretion black soil Strong-gluten wheat BREAD NOODLE QUALITY
下载PDF
Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China 被引量:1
2
作者 SHANG Man-ting LIU Pei-gui +2 位作者 LEI Chao LIU Ming-chao WU Liang 《Journal of Groundwater Science and Engineering》 2017年第3期213-221,共9页
When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-con... When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-controlled data collected at the Wudaogou Hydrological Experiment Station in the Huaibei Plain, Anhui, China, the variation trends of the evaporation rate of phreatic water from bare soil were studied through the Mann-Kendall trend test and the linear regression trend test, followed by the study on the responses of evaporation to climate change. Results indicated that in the Huaibei Plain during 1991-2008, evaporation of phreatic water from bare soil tended to increase at a rate of 5% on monthly scale in March, June and July while in other months the increase was minor. On the seasonal basis, the evaporation saw significant increase in spring and summer. In addition, annual evaporation tended to grow evidently over time. When air temperature rises by 1 °C, the annual evaporation rate increases by 7.24–14.21%, while when the vapor pressure deficit rises by 10%, it changes from-0.09 to 5.40%. The study also provides references for further understanding of the trends and responses of regional evapotranspiration to climate change. 展开更多
关键词 Climate change Evaporation of phreatic water from bare soil Fluvo-aquic soil Huaibei Plain Lime concretion black soil
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部