期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Coupling numerical simulation with remotely sensed information for the study of frozen soil dynamics 被引量:2
1
作者 HuiRan Gao WanChang Zhang 《Research in Cold and Arid Regions》 CSCD 2020年第6期404-417,共14页
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better unde... The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil. 展开更多
关键词 frozen soil water-heat coupled model passive microwave remote sensing COUPLING frozen soil dynamics
下载PDF
The runoff characteristics and harmonic analysis of the soil moisture dynamics in Robinia pseudoacacia stand 被引量:1
2
作者 高鹏 刘作新 陈伏生 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期295-298,共4页
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes... Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion. 展开更多
关键词 Hilly semi-arid area Robinia pseudoacacia stand Runoff generation characteristics soil moisture dynamics Harmonic analysis
下载PDF
Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China 被引量:13
3
作者 LIU Bingxia SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2016年第1期47-59,共13页
Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objectiv... Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objective of this study was to examine the responses of soil water dynamics under four typical vegetation types against precipitation years. Soil water contents (SWCs) were measured in 0–4.0 m profiles on a hillslope under the four vegetation types of shrub, pasture, natural fallow and crop in a re-vegetated catchment area from April to October in normal (2010), dry (2011), wet (2014) and extremely wet (2013) years. The results indicated that precipitation and vegetation types jointly controlled the soil water temporal dynamics and profile characteristics in the study region. SWCs in 0–4.0 m profiles of the four vegetation types were ranked from high to low as crop>fallow>pasture>shrub and this pattern displayed a temporal stability over the four years. In the extremely wet year, SWC changes occurred in the 0–2.0 m layer under shrub and pasture while the changes further extended to the depth of 4.0-m deep layers under fallow and crop. In the other three years, SWCs changes mainly occurred in the 0–1.0 m layer and kept relatively stable in the layers deeper than 1.0 m for all the four vegetation types. The interannual variation in soil depth of SWCs was about 0–2.0 m for shrub and pasture, about 0–3.4 m for fallow and about 0–4.0 m for crop, respectively. The dried soil layers formed at the depths of 1.0, 0.6, 1.6 and 0.7 m under shrub, and 1.0, 1.0, 2.0 and 0.9 m under pasture, respectively in 2010, 2011, 2013 and 2014. The infiltrated rainwater mostly stayed in the 0–1.0 m layer and hardly supplied to soil depth >1.0 m in normal, dry and wet years. Even in the extremely wet year of 2013, rainwater recharge depth did not exceed 2.0 m under shrub and pasture. This implied that soil desiccation was difficult to remove in normal, dry and wet years, and soil desiccation could be removed in 1.0–2.0 m soil layers even in the extremely wet year under shrub and pasture. The results indicated that the natural fallow was the best vegetation type for achieving sustainable utilization of soil water and preventing soil desiccation. 展开更多
关键词 precipitation pattern RESTORATION soil water dynamics soil desiccation vegetation type
下载PDF
Characteristic of Soil Hydro-Physical Properties and Water Dynamics under Different Vegetation Restoration Types 被引量:2
4
作者 MA Zelong GONG Yuanbo HU Tingxing 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期1009-1014,共6页
By combining the observation of the soil profile at field and the chemical and physical analysis in laboratory, a study on the hydro-physical properties of soil in six different vegetation types and the dynamics of ... By combining the observation of the soil profile at field and the chemical and physical analysis in laboratory, a study on the hydro-physical properties of soil in six different vegetation types and the dynamics of water content after rain was conducted in Wanchanggou, Guangyuan City to find out the vegetation types with effective water-conservation functions in order to serve the ecological restoration in the low hill heavy rain area upper the Jialing River. Results showed that., the hydro-physical properties of soil in the mixed Alnus crernastogyne and Cupressua Leyland forest (AcCl) were best. But in the depth of 0-20 cm. The properties of soil in the abandoned cropland (Fm) was better than that in the AcCl. The soil bulk densities varied significantly between the layers of 0-20 cm and 20-40 cm in all the six vegetation types except that in the Robinia pseudoacacia shrub forest (RpII), and the changes of the maximum and the capillary moisture capacity between layers were significant only in the Fm and in the AcCl. Of these stands, the AcCl had the shortest water-absorbing period and the strongest moisture changes in the upper layer (0-15 cm). In the same stand, the deeper the soil layer, the slighter the soil moisture varied, and the longer the soil moisture accumulating process lasted. 展开更多
关键词 vegetation types soil hydro-physical property soil moisture dynamic the upper of Jialing River
下载PDF
Study on soil erosion dynamics in typical regionof southern China based on remote sensing, GISand gray forecast model 被引量:1
5
作者 ZHANG Jia-hua YAO Feng-met Chang-yao(START, InstitUte of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029)(Beijing Forestry University, Beliing 100083)(InstitUte of Remote Sensing Application, Chinese Academy of Sciences, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 1999年第4期387-393,共7页
This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annu... This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively. 展开更多
关键词 soil erosion dynamics. remote sensing. GIS gray forecast model southern China
下载PDF
Impact of Crude Oil on Soil Nitrogen Dynamics and Uptake by Legumes Grown in Wetland Ultisol of the Niger Delta, Nigeria
6
作者 Richard C. John Emem S. Ntino Alfred Y. Itah 《Journal of Environmental Protection》 2016年第4期507-515,共9页
The effects of crude oil on soil nitrogen dynamics and cycling in plant-soil ecosystems and its effect on the growth of legumes (Calopogonium mucunoides, Centrosema pubescens and Pueraria phaseolodes) grown in wetland... The effects of crude oil on soil nitrogen dynamics and cycling in plant-soil ecosystems and its effect on the growth of legumes (Calopogonium mucunoides, Centrosema pubescens and Pueraria phaseolodes) grown in wetland ultisols were investigated. The test plants species were grown on wetland soil simulated with 0.35, 10.8, 20.5, and 50 g.kg<sup>-1</sup>levels of crude oil contamination. The results showed time and species dependent variation in mineral N content of the treated soils. The variation is indicative of significant interaction between the hydrocarbon content and plant species. Variations in microbial N and microbial C were similar and correlation between the microbial N and the total C (Organic matter (C) + hydrocarbon content (C)) in soil was highly significant (r = 0.96, n = 12, P ≤ 0.01). The presence of hydrocarbon contaminant widens the C:N ratio in soil and leads to more available N being immobilized by soil microorganisms, which reduces available N for plant uptake. This result implies that crude oil contamination significantly reduces N uptake by plants but increases N accumulation in soil microbial biomass. The findings show that N dynamics, transformation and cycling in soil are influenced by hydrocarbons and that the interactions between hydrocarbon content and plant species in contaminated soil are remarkable. The use of plant Centrosema pubescens with poultry manure or NPK fertilizer for bioremediation is more effective than that of Calopogonium mucunoides and Pueraria phaseoloides. However, the selective attributes of the various treatment approaches adopted here may be exploited for enhanced remediation of contaminated wetlands in the Niger Delta region of Nigeria.   展开更多
关键词 IMPACT Crude Oil soil Nitrogen dynamics Legumes Wetland Ultisol Niger Delta
下载PDF
Seismic response of tall building considering soil-pile-structure interaction 被引量:6
7
作者 Han Yingcai Fluor Canada Ltd.,Calgary,AB,Canada Ph.D.,Principal Engineering Specialist 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期57-64,共8页
The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile fo... The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model. 展开更多
关键词 dynamic soil-pile-structure interaction soil dynamics structural dynamics nonlinear vibration seismic response of tall building
下载PDF
Identification and imaging of soil and soil-pile deformation in the presence of liquefaction 被引量:5
8
作者 M. Zeghal P. V. Kallou +2 位作者 C. Oskay T. Abdoun M. K. Sharp 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期171-182,共12页
A simple identification technique is developed to visualize the dynamic deformation mechanisms of centrifuge models of saturated soil and soil-pile systems using the measurements provided by sparsely distributed senso... A simple identification technique is developed to visualize the dynamic deformation mechanisms of centrifuge models of saturated soil and soil-pile systems using the measurements provided by sparsely distributed sensors. Crosscorrelation analyses are employed first to assess the variation of shear wave velocity profile with time as soil experiences stiffness reduction and degradation during dynamic excitations. The corresponding time-dependent modal configurations are determined using the finite-element technique. These configurations are used along with recorded motions to evaluate optimal time histories of displacement and strain fields based on a spectral motion reconstruction. Visualizations of the response of infinite slope and soil-pile centrifuge models revealed salient and complex multi-dimensional deformation patterns, especially at high pore pressure ratios. The developed technique provides an effective tool to visualize and analyze the dynamic response of centrifuge, shake-table and field soil systems. 展开更多
关键词 soil dynamics LIQUEFACTION VISUALIZATION centrifuge model
下载PDF
Study of vibrating foundations considering soil-pile-structure interaction for practical applications 被引量:5
9
作者 Han Yingcai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期321-327,共7页
An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for t... An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for the dynamic analysis, and compared with a 3D finite element (FE) model. Two commercial software packages are used for dynamic analysis considering the soilpile-structure interaction (SPSI). Stiffness and damping of the pile foundation are generated from a computer program, and then input into the FE model. To examine the SPSI thoroughly, three cases for the soil, piles and superstructure are considered and compared. In the first case, the interaction is fully taken into account, that is, both the superstructure and soil-pile system are flexible. In the second case, the superstructure is flexible but fixed to a rigid base, with no deformation in the base (no SSI). In the third case, the dynamic soil-pile interaction is taken into account, but the table top structure is assumed to be rigid. From the comparison beteen the results of these three cases some conclusions are made, which could be helpful for engineering practice. 展开更多
关键词 soil-pile-structure interaction soil dynamics structural dynamics vibrating foundation
下载PDF
Development and Prospect of Study on Soil Nonlinear Dynamic Characteristics under Strong-Motion 被引量:1
10
作者 Wang Yushi Li Xiaojun +2 位作者 Lan Riqing Wang Ning Chen Hongjuan 《Earthquake Research in China》 CSCD 2017年第1期12-24,共13页
Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional r... Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies. 展开更多
关键词 Strong-motion soil dynamics Local site effect Strong-motion observation Vertical array record
下载PDF
Numerical analysis of the interaction of soil-structure under earthquake loading
11
作者 章根德 宁书成 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第4期63-69,共7页
In this paper, the dynamical response of soil structure coupled system was studied by the continuum theory of soild fluid mixtures, the building foundation system subjected to rapid earthquake excitation were calcul... In this paper, the dynamical response of soil structure coupled system was studied by the continuum theory of soild fluid mixtures, the building foundation system subjected to rapid earthquake excitation were calculated by using finite element method.In the results, the deformation patterns and corresponding contour diagrams of pore pressure at various time levels are given, time variations of displacement in a certain node and shear stress in a certain element are also presented. The results of this study have provided an improved understanding of coupled behaviour of porous media. The procedure developed in this paper can be effectively used under a wide range of loading conditions from very slow quasi static to very rapid earthquake excitations. 展开更多
关键词 soil dynamics soil structure interaction earthquake response
下载PDF
Carbon fixation and influencing factors of biological soil crusts in a revegetated area of the Tengger Desert,northern China 被引量:8
12
作者 Lei HUANG ZhiShan ZHANG XinRong LI 《Journal of Arid Land》 SCIE CSCD 2014年第6期725-734,共10页
Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss... Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effec- tive active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2.d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2.a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2.a) (30.2% of the total) and 8.8 g C/(m2.a) (43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same. 展开更多
关键词 moss crusts algae crusts soil moisture dynamics non-rainfall water effective wetting time
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:6
13
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION Dynamic soil pressure Dynamic response characteristic
下载PDF
Soil phosphorus dynamic, balance and critical P values in longterm fertilization experiment in Taihu Lake region, China 被引量:16
14
作者 SHI Lin-lin SHEN Ming-xing +4 位作者 LU Chang-yin WANG Hai-hou ZHOU Xin-wei JIN Mei-juan WU Tong-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2446-2455,共10页
Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, bala... Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen(N) and potassium(K), only the following treatments were chosen for subsequent discussion, including: C0(control treatment without any fertilizer or organic manure), CNK treatment(mineral N and K only), CNPK(balanced fertilization with mineral N, P and K), MNK(integrated organic manure and mineral N and K), and MNPK(organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P(TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg^(–1), respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K. 展开更多
关键词 long-term fertilization soil P dynamic soil P balance crop yield critical P value
下载PDF
Application of stable isotope techniques to the study of soil salinization 被引量:2
15
作者 YongQin CUI JianYing MA Wei SUN 《Journal of Arid Land》 SCIE 2011年第4期285-291,共7页
In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evapo... In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology. 展开更多
关键词 stable isotope soil water evaporation soil salinization dynamic salt-tolerant plants breeding
下载PDF
Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading 被引量:2
16
作者 Shiv Shankar Kumar A.Murali Krishna Arindam Dey 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期958-967,共10页
Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all ... Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region. 展开更多
关键词 Cohesive soil Dynamic soil properties Liquefaction potential Cyclic triaxial tests Staged cyclic loading
下载PDF
Effects of Plastic Film Mulching of Millet on Soil Moisture and Temperature in Semi-Arid Areas in South Ningxia of China 被引量:3
17
作者 LIAO Yun-cheng ZHANG De-qi JIA Zhi-kuan ZHANG Li LU Yang-ming 《Agricultural Sciences in China》 CAS CSCD 2005年第11期865-871,共7页
The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), wa... The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), water micro-collecting farming in winter fallow (WW), hole seeding on film (HF), hole seeding on film in winter fallow (HW) were compared to determine the effects of mulching methods on soil water collecting and conservation during millet growth periods of 2003-2004, as well as the variation tendency of water content after rainfall, output of millet and water use efficiency (WUE). The experimental results in the two successive years indicated that water micro-collecting farming had a better function of collecting water after rainfall, and side infiltrated water was stored under the ridges and the top layer 0-40 cm soil water changes were great. WF had obvious role in water collection and preservation of soil moisture. It effectively improved the water supply capacity by about 19.05% in the end of growth seasons. The storage of HW and WW increased by 24.9 and 7.1 mm compared with CK, and output of yield were obviously increased. Film mulching increased the yield of millet and enhanced water use efficiency (WUE). During different growth periods, WF exhibited better water storage function with lower water consumption, and demonstrated optimal social and ecological benefits. 展开更多
关键词 MILLET Dynamic change of soil moisture Film mulching Water micro-collecting farming
下载PDF
The efficiency of using a seismic base isolation system for a 2D concrete frame founded upon improved soft soil with rigid inclusions
18
作者 Talal Awwad Modar Donia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期49-60,共12页
2D finite element models were developed to analyze the effect of improved soft-soil foundation on the efficiency of a base-isolated concrete frame. Static and dynamic analyses were performed for a frame on raft founda... 2D finite element models were developed to analyze the effect of improved soft-soil foundation on the efficiency of a base-isolated concrete frame. Static and dynamic analyses were performed for a frame on raft foundation. Non-improved and improved soft-soil foundation using rigid inclusions were considered, as well as the use of high damping rubber bearing as base isolation. Results show that the use of rigid inclusions increases the efficiency of base isolation; base shear is reduced by 38% and maximum acceleration at the top of the frame by 30%. 展开更多
关键词 rigid inclusion dynamic soil response FOUNDATION finite element method
下载PDF
Dynamic soil arching in piled embankment under train load of high-speed railways
19
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
Research on Dynamic Parameters of Soil Site in the Tianjin Coastal Area
20
作者 Peng Yanju Lv Yuejun Qian Haitao 《Earthquake Research in China》 2011年第3期340-351,共12页
The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes ... The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects. 展开更多
关键词 Site soil soil dynamic parameter Soft soil Tianjin coastal area
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部