期刊文献+
共找到1,412篇文章
< 1 2 71 >
每页显示 20 50 100
A novel true triaxial test system for microwave-induced fracturing of hard rocks 被引量:15
1
作者 Xia-Ting Feng Jiuyu Zhang +4 位作者 Chengxiang Yang Jun Tian Feng Lin Shiping Li Xiangxin Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期961-971,共11页
This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing s... This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system. 展开更多
关键词 Deep hard rock engineering True triaxial apparatus Microwave-induced fracturing of hard rocks electromagnetic compatibility dynamic monitoring Evolution of rock fracturing
下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
2
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
下载PDF
Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests 被引量:1
3
作者 TANG Lian-sheng ZHAO Zhan-lun +2 位作者 CHEN Hao-kun WU Yan-ping ZENG Yu-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期728-742,共15页
The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on... The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model. 展开更多
关键词 granite residual soil creep tests dynamic stress accumulation model
下载PDF
A Discussion on Dynamic Characteristics of Undisturbed Loess by Dynamic Triaxial Test
4
作者 Zhang Lirong Shi Yucheng +1 位作者 Qiu Gongrong Liu Kun 《Earthquake Research in China》 2011年第3期352-357,共6页
Based on the dynamic triaxial test system and using the fitted wave of the Wenchuan earthquake and 1 Hz constant amplitude sinusoid,the paper compares the results of tests on undisturbed loess samples under different ... Based on the dynamic triaxial test system and using the fitted wave of the Wenchuan earthquake and 1 Hz constant amplitude sinusoid,the paper compares the results of tests on undisturbed loess samples under different loads and vibration modes but under same saturated conditions.Results of the comparative experiment show:The stress-strain curves have a similar trend under random seismic loading and constant amplitude sinusoidal loading,but the random seismic loading is more sensitive to failure strength of the undisturbed loess samples under the same stress. 展开更多
关键词 dynamic triaxial test Wenchuan earthquake random wave Constantamplitude sinusoid dynamic stress-strain curve
下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:16
5
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed RAILWAY FULL-SCALE model testing dynamic response expansive soil service environment NEW SUBGRADE structure
下载PDF
Experimental study of dynamic resilient modulus of subgrade soils under coupling of freeze–thaw cycles and dynamic load 被引量:11
6
作者 ZHAO Yang LU Zheng +2 位作者 YAO Hai-lin GU Fan DUAN Ya-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2043-2053,共11页
Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m... Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas. 展开更多
关键词 dynamic resilient modulus freeze–thaw cycles dynamic load dynamic triaxial test prediction model
下载PDF
Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion 被引量:8
7
作者 Sun Jing Gong Maosheng Tao Xiaxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期561-568,共8页
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat... The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase. 展开更多
关键词 dynamic shear modulus consolidation ratio undisturbed soil resonant column test surface ground motion
下载PDF
Dynamic behaviour of weathered red mudstone in Sichuan(China)under triaxial cyclic loading 被引量:7
8
作者 ZHANG Chong-lei JIANG Guan-lu +1 位作者 SU Li-jun LIU Wei-ming 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1789-1806,共18页
The construction of a high-speed railway(HSR) in Southwest China is being hindered by a severe shortage of high-quality subgrade materials. However, red mudstone is widely distributed in the Sichuan Basin of China. Th... The construction of a high-speed railway(HSR) in Southwest China is being hindered by a severe shortage of high-quality subgrade materials. However, red mudstone is widely distributed in the Sichuan Basin of China. The ability to use weathered red mudstone(WRM) to fill subgrade beds by controlling its critical stress and cumulative strain would enable substantial savings in project investments and mitigate damage to the ecological environment. To better understand the dynamic behaviour of WRM, both monotonic and cyclic triaxial tests were performed. The evolution of the cumulative strain vs. increased loading cycles was measured. The influences of confining pressure and loading cycles on the dynamic modulus, damping ratio, critical cyclic stress ratio(CSR), and dynamic stress level(DSL) were investigated. The relationship between the CSR and loading cycles under different failure strain criteria(0.1%-1.0%) was analysed. The prediction model of cumulative strain was also evaluated. The results indicated that the shear strength of WRM sufficiently meets the static strength requirements of subgrade. The critical dynamic stress of WRM can thus satisfy the dynamic stress-bearing requirement of the HSR subgrade. The critical CSR decreases and displays a power function with increasing confining pressure. As the confining pressure increases, the DSL remains relatively stable, ranging between 0.153 and 0.163. Furthermore, the relationship between the dynamic strength and loading cycles required to cause failure was established. Finally, a newly developed model for determining cumulative strain was established. A prediction exercise showed that the model is in good agreement with the experimental data. 展开更多
关键词 Cyclic triaxial tests Cyclic stress ratio Red mudstone Critical dynamic stress Cumulative strain Railway subgrade
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:6
9
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION dynamic soil pressure dynamic response characteristic
下载PDF
Experimental study of the dynamic mechanical responses and failure characteristics of coal under true triaxial confinements 被引量:4
10
作者 Zhanguo Ma Pengfei Yan +3 位作者 Shixing Cheng Peng Gong Fuzhou Qi Jianguo Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期761-772,共12页
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b... Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions. 展开更多
关键词 COAL True triaxial SHPB test dynamic mechanical properties Failure characteristics
下载PDF
Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading 被引量:2
11
作者 Shiv Shankar Kumar A.Murali Krishna Arindam Dey 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期958-967,共10页
Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all ... Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region. 展开更多
关键词 Cohesive soil dynamic soil properties Liquefaction potential Cyclic triaxial tests Staged cyclic loading
下载PDF
Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles 被引量:2
12
作者 WANG Dan LIU En-long +3 位作者 YANG Cheng-song LIU You-qian ZHU Sheng-xian YU Qi-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期242-255,共14页
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem... As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions. 展开更多
关键词 Freeze-thaw cycles Frozen clay dynamic triaxial test dynamic mechanical properties
下载PDF
Experimental study on permanent deformation characteristics of coarse-grained soil under repeated dynamic loading 被引量:4
13
作者 Huihao Mei Sajjad Satvati Wuming Leng 《Railway Engineering Science》 2021年第1期94-107,共14页
Practical assessment of subgrade settlement induced by train operation requires developing suitable models capable of describing permanent deformation characteristics of subgrade filling under repeated dynamic loading... Practical assessment of subgrade settlement induced by train operation requires developing suitable models capable of describing permanent deformation characteristics of subgrade filling under repeated dynamic loading.In this paper,repeated load triaxial tests were performed on coarse-grained soil(CGS),and the axial permanent strain of CGS under different confining pressures and dynamic stress amplitudes was analysed.Permanent deformation behaviors of CGS were categorized based on the variation trend of permanent strain rate with accumulated permanent strain and the shakedown theory.A prediction model of permanent deformation considering stress state and number of load cycles was established,and the ranges of parameters for different types of dynamic behaviors were also divided.The results indicated that the variational trend of permanent strain rate with accumulated permanent strain can be used as a basis for classifying dynamic behaviors of CGS.The stress state(confining pressure and dynamic stress amplitude)has significant effects on the permanent strain rate.The accumulative characteristics of permanent deformation of CGS with the number of load cycles can be described by a power function,and the model parameters can reflect the influence of confining pressure and dynamic stress amplitude.The study’s results could help deepen understanding of the permanent deformation characteristics of CGS. 展开更多
关键词 Repeated load triaxial tests Coarse grained soil Shakedown theory dynamic stress Accumulated permanent strain Railway subgrade
下载PDF
Experimental study of the dynamic behavior of high-grade highway-subgrade soil in a seasonally frozen area 被引量:1
14
作者 Hong Huan Cui Yu Tao Ma +1 位作者 Jian Kun Liu Zhi Yang Wang 《Research in Cold and Arid Regions》 CSCD 2017年第3期289-296,共8页
Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of para... Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%. 展开更多
关键词 seasonally FROZEN area FREEZE-THAW cycle dynamic behavior dynamic triaxial test HIGH-GRADE highway-subgrade soil
下载PDF
Evaluation of Dynamic Soil-Structure Interaction and Dynamic Seismic Soil Pressures Acting on It Subjected to Strong Earthquake Motions 被引量:1
15
作者 车爱兰 IWATATE Takahiro 葛修润 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期530-536,共7页
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were per... In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure. 展开更多
关键词 SUBWAY structure dynamic SEISMIC soil pressure dynamic soil-structure interaction SHAKING TABLE tests dynamic analyses nonlinear characteristics
下载PDF
Test on dynamic characteristics of subgrade of heavy-haul railway in cold regions 被引量:1
16
作者 YingYing Zhao XianZhang Ling +3 位作者 ZiYu Wang XinYan Shao LiHui Tian Lin Geng 《Research in Cold and Arid Regions》 CSCD 2015年第5期605-610,共6页
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship betw... Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data. 展开更多
关键词 low-temperature dynamic triaxial test dynamic constitutive relation dynamic shear modulus damping ratio freezing temperature
下载PDF
Dynamic compaction treatment technology research of red clay soil embankment in southern mountains
17
作者 刘建华 袁剑波 +1 位作者 熊虎 陈伟 《Journal of Central South University》 SCIE EI CAS 2008年第S2期50-57,共8页
High liquid limit soil generally adopted in expressway embankment construction of southern mountains, which often expresses some characteristics including high moisture content, high porosity ratio, low permeability, ... High liquid limit soil generally adopted in expressway embankment construction of southern mountains, which often expresses some characteristics including high moisture content, high porosity ratio, low permeability, high compressibility, certain disintegration, and so on. Spring soil phenomenon and inhomogeneous compaction have effects on the quality of embankment construction, just because the water in soil is difficult to evaporate. Based on the study of reinforcement mechanism for high liquid limit soil, in situ tests for dynamic compaction treatment in Yizhang-Fengtouling expressway embankment were developed. The reliable and economical dynamic compaction treatment methods and the construction technology for large range high liquid limit soil embankment in southern mountains expressway were discussed. In the process, convenient measurement methods were adopted to evaluate the treatment effects. The test results show that the dynamic compaction method has good treatment effects on the local red clay embankment. The embankment compaction degree is improved with compactness coming to 90% around tamping pits and compactness over 95% in tamping pits interior after tamping. The bearing capacity, the physical mechanic-property and the shear strength for soil are obviously improved, which are enhanced with cohesive strength increasing over 10 kPa and compression modulus increasing over 3 MPa. 展开更多
关键词 dynamic COMPACTION EMBANKMENT high liquid LIMIT soil in SITU test REINFORCEMENT mechanism
下载PDF
Dynamic soil arching in piled embankment under train load of high-speed railways
18
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:22
19
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 dynamic loading Backfill-country rock system True triaxial test Coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
下载PDF
Dynamic properties of composite cemented clay 被引量:3
20
作者 蔡袁强 梁旭 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2004年第3期60-67,共8页
In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxia... In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays. 展开更多
关键词 Composite CEMENTED CLAY dynamic triaxial test dynamic elastic MODULUS DAMPING ratio
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部