Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
This study explores the effects of vegetation and season on soil microorganisms and enzymatic activity of different wetlands in a temperate climate.Microbial carbon metabolism diversity was assessed using community-le...This study explores the effects of vegetation and season on soil microorganisms and enzymatic activity of different wetlands in a temperate climate.Microbial carbon metabolism diversity was assessed using community-level physiological profiles(CLPP)with 31 different carbon substrates.CLPP indicated that significant interactions occur during carbon substrate metabolism of the microorganisms.Furthermore,the different types of vegetation present in the wetland ecosystem combined with the seasonal effects to influence microbial carbon metabolism and enzymatic activity.The most significant differences occurred to carbohydrates,carboxylic acids,and amino acids.The Mantel test confirmed positive correlations between soil enzymatic activities and microbial carbon metabolism.Soil microorganisms in Betula ovalifolia and Carex schmidtii wetlands used carbon substrates more efficiently in summer than those in other forested wetlands during other periods.Enzymatic activities also showed a similar trend as microbial carbon metabolism.The results demonstrate that microbial carbon metabolism patterns can be used as biological indicators in wetland ecological alterations due to vegetation type or to seasonal factors.展开更多
Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycli...Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.展开更多
No tillage(NT)and spring ridge tillage(SRT)are two common applications of conservation tillage.Although conservation tillage is known to exert major control over soil microbial respiration(SMR),the growing-season SMR ...No tillage(NT)and spring ridge tillage(SRT)are two common applications of conservation tillage.Although conservation tillage is known to exert major control over soil microbial respiration(SMR),the growing-season SMR response to these two applications remains elusive.In order to better understand the influence of conservation tillage practices,this experiment was conducted in an experimental field using NT and SRT for 17 years.In situ measurements of SMR,soil temperature and soil water content(SWC)were performed.Soil samples were collected to analyze soil porosity,soil microbial biomass(SMB)and soil enzymatic activities.Results show that the two conservation tillage systems had a significant difference(p<0.05)in terms of SMR;the SMR of NT was 14.7 mg∙C/m^(2)∙h higher than that of SRT.In terms of soil temperature and soil enzymatic activities,the two treatments were not significantly different(p>0.05).Despite SRT increasing the proportion of micro-porosities and meso-porosities,the soil macro-porosities for NT were 7.37%higher than that of SRT,which resulted in higher bacteria and fungi in NT.Owing to SRT damaged the hypha,which had disadvantage in soil microbe protection.Inversely,less soil disturbance was a unique advantage in NT,which was in favor of improving soil macro-pores and SWC.Redundancy analyses(RDA)showed SMR was positively correlated with soil macro-pores,SMB and SWC.Furthermore,the Pearson correlation test indicated that SMB and soil enzymatic activities did not have a significant correlation(p>0.05).This study results suggest that SRT is more conducive to carbon sequestration compared with NT in cropland.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金The work was supported by the National Natural Science Foundation of China(No.31500508)the Fundamental Research Funds for the Central Universities(No.2572020BD02)Natural Science Foundation of Heilongjiang Province(No.LH2020C041).
文摘This study explores the effects of vegetation and season on soil microorganisms and enzymatic activity of different wetlands in a temperate climate.Microbial carbon metabolism diversity was assessed using community-level physiological profiles(CLPP)with 31 different carbon substrates.CLPP indicated that significant interactions occur during carbon substrate metabolism of the microorganisms.Furthermore,the different types of vegetation present in the wetland ecosystem combined with the seasonal effects to influence microbial carbon metabolism and enzymatic activity.The most significant differences occurred to carbohydrates,carboxylic acids,and amino acids.The Mantel test confirmed positive correlations between soil enzymatic activities and microbial carbon metabolism.Soil microorganisms in Betula ovalifolia and Carex schmidtii wetlands used carbon substrates more efficiently in summer than those in other forested wetlands during other periods.Enzymatic activities also showed a similar trend as microbial carbon metabolism.The results demonstrate that microbial carbon metabolism patterns can be used as biological indicators in wetland ecological alterations due to vegetation type or to seasonal factors.
基金the Fundamental Research Funds of CAF(CAFYBB2017ZX002)Yunnan Basic Research Program(2019FB058).
文摘Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.
基金This work was supported by the National Natural Science Foundation of China(31901408)as well as Science and Technology Development Plan of Jilin Province(20180414074GH)Special thanks to OeAD-Austrian Agency for International Cooperation in Education and Research.
文摘No tillage(NT)and spring ridge tillage(SRT)are two common applications of conservation tillage.Although conservation tillage is known to exert major control over soil microbial respiration(SMR),the growing-season SMR response to these two applications remains elusive.In order to better understand the influence of conservation tillage practices,this experiment was conducted in an experimental field using NT and SRT for 17 years.In situ measurements of SMR,soil temperature and soil water content(SWC)were performed.Soil samples were collected to analyze soil porosity,soil microbial biomass(SMB)and soil enzymatic activities.Results show that the two conservation tillage systems had a significant difference(p<0.05)in terms of SMR;the SMR of NT was 14.7 mg∙C/m^(2)∙h higher than that of SRT.In terms of soil temperature and soil enzymatic activities,the two treatments were not significantly different(p>0.05).Despite SRT increasing the proportion of micro-porosities and meso-porosities,the soil macro-porosities for NT were 7.37%higher than that of SRT,which resulted in higher bacteria and fungi in NT.Owing to SRT damaged the hypha,which had disadvantage in soil microbe protection.Inversely,less soil disturbance was a unique advantage in NT,which was in favor of improving soil macro-pores and SWC.Redundancy analyses(RDA)showed SMR was positively correlated with soil macro-pores,SMB and SWC.Furthermore,the Pearson correlation test indicated that SMB and soil enzymatic activities did not have a significant correlation(p>0.05).This study results suggest that SRT is more conducive to carbon sequestration compared with NT in cropland.