The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no...The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence.展开更多
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest...Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.展开更多
In order to find out changes in the main fertility indicators of continuous cropping tobacco fields in Henan Province with years of continuous cropping,5 typical tobacco fields( Jia County,Shaoling District,Fangcheng ...In order to find out changes in the main fertility indicators of continuous cropping tobacco fields in Henan Province with years of continuous cropping,5 typical tobacco fields( Jia County,Shaoling District,Fangcheng County,Xiangcheng County,and Song County) were studied. Indicators in question included activity of main enzymes( sucrase,urease,catalase,and acid phosphatase),p H value,organic matters,total nitrogen,available phosphorus and available potassium. The results indicate that in most tobacco fields,the activity of sucrase and urease increased in two years of continuous cropping,later,it showed a declining trend with increase in years of continuous cropping; in some fields,it directly declined with increase in years of continuous cropping; the activity of catalase increased in two years of continuous cropping,later,it showed a declining trend with increase in years of continuous cropping,and it became stable after three years of continuous cropping;generally,the activity of acid phosphatase declined with increase in the years of continuous cropping within 3 years continuous cropping,later,it became stable. Except Fangcheng County,the soil p H value of other districts( counties) generally declined with increase in years of continuous cropping,and it was in the range of 5. 6-6. 8. With the increase in continuous cropping,the soil organic matters( SOM) in tobacco fields of Jia County and Song County declined,changes of SOM in tobacco fields of Fangcheng County and Xiangcheng County were not obvious,and SOM showed the trend of first decline then rise in Shaoling District. In most tobacco fields( Jia County,Xiangcheng County,and Song County),the total nitrogen showed a declining trend; in Shaoling District,it showed a trend of first decline then rise; in Fangcheng County,it showed a rising trend. The available phosphorus firstly slightly declined then rose in tobacco fields of Shaoling District and Song County; it showed a trend of first rise then decline in Jia County; there were no obvious changes in Fangcheng County and Xiangcheng County. Changes in the available potassium were different in tobacco fields. In sum,there are certain rules for changes in soil enzyme activity and nutrient content in tobacco fields in Henan Province,but changes are not completely the same. It is concluded that the site conditions and farming activities exert a certain influence on soil enzyme activity,p H value,organic matters,and nitrogen,phosphorus and potassium content. Therefore,to solve obstacles in continuous cropping of tobacco fields,different regions should take different measures.展开更多
We investigated the relationships between dehydrogenase activity and the physicochemical properties of mountain soils over three and five years from Norway spruce(Picea abies L. Karst) logging residue spot burning and...We investigated the relationships between dehydrogenase activity and the physicochemical properties of mountain soils over three and five years from Norway spruce(Picea abies L. Karst) logging residue spot burning and the occurrence of epigeic carabid beetles. Six study sites were utilised, including18 study plots(nine plots in a mixed coniferous mountain forest site and nine plots in a mixed broadleaf mountain forest site), with five replicate pitfall traps at each site located in southern Poland.Soil samples from the organic horizon were taken for p H, organic carbon, nitrogen, base cation content,acidity and dehydrogenase activity determination.Carabid beetles were monitored in weekly intervals during the period of July to August 2016. The burning of logging residues led to modified soil properties,especially the dehydrogenase activity. In all the tested variants, the activity was higher in soil samples after the burning in comparison to the control variants. We show no positive correlation between dehydrogenase activity and the number of carabid specimens. The preferences of dominant predatory hygrophilous carabids to acid habitats with weakly decomposed organic matter were proven. Simultaneously, the soil organic matter content was positively related to the carabid abundance. The significant impact of forest site conditions and the date of logging residue burning on the number of caught specimens were confirmed. In contrast, no relationships between the species richness, species diversity, mean individual biomass and spot burning effect were found. This work supports the recommendation of spruce fine woody debris utilisation by spot burning on mountain regions with rich habitats presenting moderate wet conditions and small land falls.展开更多
Owing to vital roles played by enzymes in the preservation of the make-up of soil ecosystem and functional diversity, the influence of organic manure on the resultant biological quality of a crude oil polluted agricul...Owing to vital roles played by enzymes in the preservation of the make-up of soil ecosystem and functional diversity, the influence of organic manure on the resultant biological quality of a crude oil polluted agricultural soil from a 90 d phytoremediation pot experiment was investigated. A 4-factor phyto-assisted clean-up of crude oil polluted agricultural soil was designed with options of manure amendments, to boost micobial activities. Profiles of β-glucosidases, proteases, dehydrogenases, phosphomonoesterases and respiration were investigated. Analysis of variance of triplicate experiment was carried out. Application of soil conditioner gave no marked dehydrogenase activity, which increased with depletion of available phosphorus. Marked increases in CO2 release and alkaline phosphatase activity with soil conditioning may implicate beneficial relationship with the abundance of microbial populations. Flooding in some pots correlated with β-glucosidase and respiratory acitivities. A direct relationship between cellulose breakdown, measurable with β-glucosidase activity, organic matter and CO2 release, measurable with respiratory activity within all soils was found in the present study. Use of organic manure significantly improved CO2 release by soil biota in hydrocarbon-impacted soil and may be explored for phytoremediation technique.展开更多
基金financed by the National Science Centre,Poland:decision no.DEC 2020/39/B/NZ9/00372
文摘The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence.
基金supported by the National Basic Research Program of China(2012CB416903)the National Natural Science Foundation of China(31570600)
文摘Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.
基金Supported by Key Scientific and Technological Plan Project of Henan Tobacco Company(HYKJM201304)
文摘In order to find out changes in the main fertility indicators of continuous cropping tobacco fields in Henan Province with years of continuous cropping,5 typical tobacco fields( Jia County,Shaoling District,Fangcheng County,Xiangcheng County,and Song County) were studied. Indicators in question included activity of main enzymes( sucrase,urease,catalase,and acid phosphatase),p H value,organic matters,total nitrogen,available phosphorus and available potassium. The results indicate that in most tobacco fields,the activity of sucrase and urease increased in two years of continuous cropping,later,it showed a declining trend with increase in years of continuous cropping; in some fields,it directly declined with increase in years of continuous cropping; the activity of catalase increased in two years of continuous cropping,later,it showed a declining trend with increase in years of continuous cropping,and it became stable after three years of continuous cropping;generally,the activity of acid phosphatase declined with increase in the years of continuous cropping within 3 years continuous cropping,later,it became stable. Except Fangcheng County,the soil p H value of other districts( counties) generally declined with increase in years of continuous cropping,and it was in the range of 5. 6-6. 8. With the increase in continuous cropping,the soil organic matters( SOM) in tobacco fields of Jia County and Song County declined,changes of SOM in tobacco fields of Fangcheng County and Xiangcheng County were not obvious,and SOM showed the trend of first decline then rise in Shaoling District. In most tobacco fields( Jia County,Xiangcheng County,and Song County),the total nitrogen showed a declining trend; in Shaoling District,it showed a trend of first decline then rise; in Fangcheng County,it showed a rising trend. The available phosphorus firstly slightly declined then rose in tobacco fields of Shaoling District and Song County; it showed a trend of first rise then decline in Jia County; there were no obvious changes in Fangcheng County and Xiangcheng County. Changes in the available potassium were different in tobacco fields. In sum,there are certain rules for changes in soil enzyme activity and nutrient content in tobacco fields in Henan Province,but changes are not completely the same. It is concluded that the site conditions and farming activities exert a certain influence on soil enzyme activity,p H value,organic matters,and nitrogen,phosphorus and potassium content. Therefore,to solve obstacles in continuous cropping of tobacco fields,different regions should take different measures.
基金financed by the Ministry of Science and Higher Education, Republic of Poland
文摘We investigated the relationships between dehydrogenase activity and the physicochemical properties of mountain soils over three and five years from Norway spruce(Picea abies L. Karst) logging residue spot burning and the occurrence of epigeic carabid beetles. Six study sites were utilised, including18 study plots(nine plots in a mixed coniferous mountain forest site and nine plots in a mixed broadleaf mountain forest site), with five replicate pitfall traps at each site located in southern Poland.Soil samples from the organic horizon were taken for p H, organic carbon, nitrogen, base cation content,acidity and dehydrogenase activity determination.Carabid beetles were monitored in weekly intervals during the period of July to August 2016. The burning of logging residues led to modified soil properties,especially the dehydrogenase activity. In all the tested variants, the activity was higher in soil samples after the burning in comparison to the control variants. We show no positive correlation between dehydrogenase activity and the number of carabid specimens. The preferences of dominant predatory hygrophilous carabids to acid habitats with weakly decomposed organic matter were proven. Simultaneously, the soil organic matter content was positively related to the carabid abundance. The significant impact of forest site conditions and the date of logging residue burning on the number of caught specimens were confirmed. In contrast, no relationships between the species richness, species diversity, mean individual biomass and spot burning effect were found. This work supports the recommendation of spruce fine woody debris utilisation by spot burning on mountain regions with rich habitats presenting moderate wet conditions and small land falls.
文摘Owing to vital roles played by enzymes in the preservation of the make-up of soil ecosystem and functional diversity, the influence of organic manure on the resultant biological quality of a crude oil polluted agricultural soil from a 90 d phytoremediation pot experiment was investigated. A 4-factor phyto-assisted clean-up of crude oil polluted agricultural soil was designed with options of manure amendments, to boost micobial activities. Profiles of β-glucosidases, proteases, dehydrogenases, phosphomonoesterases and respiration were investigated. Analysis of variance of triplicate experiment was carried out. Application of soil conditioner gave no marked dehydrogenase activity, which increased with depletion of available phosphorus. Marked increases in CO2 release and alkaline phosphatase activity with soil conditioning may implicate beneficial relationship with the abundance of microbial populations. Flooding in some pots correlated with β-glucosidase and respiratory acitivities. A direct relationship between cellulose breakdown, measurable with β-glucosidase activity, organic matter and CO2 release, measurable with respiratory activity within all soils was found in the present study. Use of organic manure significantly improved CO2 release by soil biota in hydrocarbon-impacted soil and may be explored for phytoremediation technique.