期刊文献+
共找到8,429篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of soil crust on the collapsing erosion of colluvial deposits with granite residual soil
1
作者 LIU Weiping ZENG Bohan +1 位作者 WANG Tianhuan DUAN Junyi 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2579-2591,共13页
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo... Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments. 展开更多
关键词 Granite residual soil Colluvial deposits Slope erosion soil crust Sediment yield
下载PDF
Soil erosion susceptibility mapping of Hangu Region,Kohat Plateau of Pakistan using GIS and RS-based models
2
作者 Fakhrul ISLAM Liaqat Ali WASEEM +5 位作者 Tehmina BIBI Waqar AHMAD Muhammad SADIQ Matee ULLAH Walid SOUFAN Aqil TARIQ 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2547-2561,共15页
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu... Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE. 展开更多
关键词 soil erosion Geospatial technology Statistical models Hangu Pakistan
下载PDF
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India
3
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 soil erosion soil organic carbon Rainfall-runoff erosivity factor soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
Effect of Some Physical Factors on Interrill Erosion of Soils in Gidan-Kwanu Area, Nigeria
4
作者 Ebierin Akpoebidimiyen Otuaro John Jiya Musa Micheal Abolarin 《Journal of Environmental Protection》 2024年第4期475-484,共10页
Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill ... Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. 展开更多
关键词 AGRICULTURE erosion FARMING POROSITY soil
下载PDF
Soil erosion and its causes in high-filling body:A case study of a valley area on the Loess Plateau,China 被引量:1
5
作者 BAO Han TANG Ming +3 位作者 LAN Heng-xing PENG Jian-bing ZHENG Han GUO Guan-miao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期182-196,共15页
Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.T... Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.Taking a typical high-filling body(HFB)formed by LCPs in Yan’an,China as the subject,this study comprehensively investigated the types and causes of soil erosion with multiple methods of field investigation,on-site monitoring and laboratory tests.Results showed that the HFB presented a composite pattern of soil erosion with multiple types mainly including underground erosion,mixed water-gravity erosion,seepage erosion,and scouring erosion.The type of erosion varied spatially in different parts of the HFB depending on the dominant factors,mainly including the groundwater state,rainfall,runoff,gravity action,topography,and soil erodibility.The underground erosion mainly occurred at the positions with higher groundwater level and larger hydraulic gradient,while scouring erosion mainly occurred at the positions with extensive interactions of surface runoff,channel slope gradient and soil properties.And near the leading edge of the top of the slope,a band of mixed watergravity erosion occurred owing to the effects of water and gravity.In addition,nearly saturated soils at the toe of HFB displayed groundwater exfiltration and slope-face slumping.Based on our findings on the causes and variation of soil erosion for the HFB,we proposed the following erosion prevention and control measures to protect the LCPs on the Loess Plateau:to construct drainage ditches and blind ditches to form a complete drainage system,plant alfalfa on the top platform to increase rainfall interception and reduce surface runoff,set seepage ditches and plant deep-rooted plants at the toe of the slope to improve slope toe stability,monitor groundwater level and slope deformation to learn the erosion dynamics and slope stability,and optimize the geometry of HFB such as the slope gradient and slope steps to reduce soil erosion. 展开更多
关键词 Land consolidation High-filling body soil erosion Loess Plateau On-site monitoring Influence factors
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
6
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Sediment yield and erosion–deposition distribution characteristics in ephemeral gullies in black soil areas under geocell protection 被引量:1
7
作者 WANG Xinyu SU Yu +4 位作者 SUN Yiqiu ZHANG Yan GUAN Yinghui WANG Zhirong WU Hailong 《Journal of Arid Land》 SCIE CSCD 2023年第2期180-190,共11页
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conser... Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion. 展开更多
关键词 GEOCELL erosion and deposition distribution runoff and sediment production ephemeral gully soil conservation
下载PDF
Review and prospect of soil compound erosion
8
作者 YANG Wenqian ZHANG Gangfeng +2 位作者 YANG Huimin LIN Degen SHI Peijun 《Journal of Arid Land》 SCIE CSCD 2023年第9期1007-1022,共16页
Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or... Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or more erosion forces.In recent years,fluctuations and extreme changes in climatic factors(air temperature,precipitation,wind speed,etc.)have led to an increase in the intensity and extent of compound erosion,which is increasingly considered in soil erosion research.First,depending on the involvement of gravity,compound erosion process can be divided into compound erosion with and without gravity.We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces(wind,water,and freeze-thaw)considering different combinations,combed the characteristics of compound erosion in three typical regions,namely,high-elevation areas,high-latitude areas,and dry and wet transition regions,and reviewed soil compound erosion research methods,such as station observations,simulation experiments,prediction models,and artificial neural networks.The soil erosion model of wind,water,and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion.Furthermore,it is proposed that there are several issues such as unclear internal mechanisms,lack of comprehensive prediction models,and insufficient scale conversion methods in soil compound erosion research.It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change. 展开更多
关键词 soil compound erosion soil erosion gravity erosion wind and water erosion freeze-thaw erosion
下载PDF
Influence law of modified glutinous rice-based materials on gravel soil reinforcement and water erosion process
9
作者 ZHANG Weng-xiang PEI Xiang-jun +4 位作者 ZHANG Xiao-chao WU Xue-min XIAO Wei-yang QIN Liang ZHU Jin-yu 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3552-3567,共16页
A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration o... A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect. 展开更多
关键词 Modified glutinous rice substrate Gravel soil soil reconstruction Trauma repair Water erosion
下载PDF
Elevation,bedrock exposure,land use,interbedded limestone and clastic rock,and vegetation coverage dominate the spatiotemporal variability of soil erosion in karst basin
10
作者 CHEN Mei GAO Jia-yong +2 位作者 CHEN Hong-lian JING Jun LI Rui 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2519-2535,共17页
Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosio... Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosion prevention and control.However,the mechanisms influencing the characteristic features of the karst basins,such as bedrock exposure and lithology,still need to be further explored.This study used GIS technology,the Revised Universal Soil Loss Equation model,Getis–Ord Gi*,and partial least squares regression(PLSR)to identify the dominant factors influencing soil erosion and the spatiotemporal variability of soil erosion in 31 sub-basins of the Dabang River Basin(DRB),a typical karst area of Southwest China,from 2010 to 2020.The results indicated that soil erosion in the DRB from 2010 to 2020 was generally decreasing,the mean soil erosion in the DRB in 2010,2015 and 2020 was 18.46,16.51 and 15.29 t ha^(-1)a^(-1),respectively.During the study period,the area of slight erosion increased by 26.39%(706.54 km^(2)),while severe erosion enlarged by 26.36 km^(2).Spatially,the DRB was primarily affected by medium and slight soil erosion.The hot spot areas of soil erosion(key control areas)were mainly concentrated in the central and southern parts of the basin,decreasing each year,and the area of soil erosion hot pots has decreased from 43.22%to 20.60%.PLSR decoupling results show that elevation,bedrock exposure,land use type,interbedded limestone and clastic rock,and vegetation coverage were identified as the key variables affecting soil erosion,explaining 52.8%of soil erosion variability,with a high value of the Variable Importance on Projection(VIP)more than 1.These results can be used as a reference for comprehensive control of soil erosion and water loss in the basin. 展开更多
关键词 soil erosion Karst basin RUSLE model Spatiotemporal variability PLSR
下载PDF
Changes of spring wind erosion based on wind erosion climate factor in the black soil region of Northeast China
11
作者 YAN Ping JI Sheng-tai +5 位作者 LI Xiu-fen ZHU Hai-xia WANG Liang-liang ZHAI Mo WANG Ping ZHAO Hui-ying 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1712-1724,共13页
The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security ... The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security of this region.In this paper,based on the daily observation data of 124 meteorological stations in study area from 1961 to 2020,seasonal and monthly wind erosion climate factor(C)in spring(March to May)were calculated by using the method proposed by the Food and Agriculture Organization of the United Nations(FAO),the wind erosion characterization in spring were systematically analyzed based on C by various statistical analysis methods.The results showed that in the past 60 years,spring wind erosion climate factor(CSp)and monthly C of the whole region and each province(region)all showed highly significant decreasing trend,but they began to show rebounded trend in the middle or late 2000s.CSp of the study area showed a significant upward trend since 2008 with an increase of 4.59(10a)^(-1).The main contributors to this upward trend are the changes of C in March and in April.For the four provinces(regions),CSp in Heilongjiang,Jilin,Liaoning and eastern Inner Mongolia all showed rebounded since 2008,2011,2008 and 2009,respectively.The rebounded trend of CSp in eastern Inner Mongolia was the most obvious with a tendency rate of 11.27(10a)^(-1),and its mutation occurred after 1984.The rebound trend of CSp in Heilongjiang Province takes the second place,with a trend rate of 4.72(10a)^(-1),but there’s no obvious time mutation characteristics.The spatial characteristics of CSpand monthly C are similar,showing decreasing characteristics centered on the typical black soil belt of Northeast China.Compared with 1961-1990,in the period from 1991 to 2020,the proportion of high value areas(CSp>35,monthly C>10)has decreased to varying degrees,while the proportion of low value areas(CSp≤10,monthly C≤4)has increased.The trends of seasonal and monthly C in 82.2%~87.7%of the stations show significant decreases at 95%confidence level.CSp is closely related to wind speed at 2m height,temperature difference,minimum temperature and precipitation in the same period,of which the correlation between CSp and wind speed is the strongest,indicating that the main control factor for CSp in the study area is wind speed,but the impact of the change of temperature and precipitation on CSp cannot be ignored. 展开更多
关键词 Wind erosion climate erosivity Spatiotemporal 1characteristics Climate change Rebounded trend Typical black soil region Northeast China
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
12
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and Water Conservation Regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
First application of plutonium in soil erosion research on terraces
13
作者 Yong-Jing Guan Wu Chen +12 位作者 Shen-Zhen Wang Yu-Xin Hua Qiao-Yan Jing Zhi-Yong Liu Chun-Ping Huang De-Yu Wang Hui-Juan Wang Xian-Wen He Mario De Cesare Liang-Jia Cui Hua He Kai-Di Fan Zi-Chen Guo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期41-53,共13页
The spatial distributions of ^(239+240)Pu and ^(137)Cs in soils from Longji Rice Terraces were investigated to evaluate soil erosion.The activity concentrations of ^(239+240)Pu and ^(137)Cs in the surface soils of the... The spatial distributions of ^(239+240)Pu and ^(137)Cs in soils from Longji Rice Terraces were investigated to evaluate soil erosion.The activity concentrations of ^(239+240)Pu and ^(137)Cs in the surface soils of the paddy fields were in the range of 0.089–0.734 and1.80–7.88 mBq/g,respectively.The activities of ^(239+240)Pu and ^(137)Cs showed very similar distribution trends,first increasing and then decreasing with increasing elevation.The 240Pu/239Pu atom ratios in the surface soils ranged from 0.162 to 0.232.The activities of ^(239+240)Pu and ^(137)Cs in the soil cores tended to be uniformly distributed within the plowed layer and declined exponentially below this depth.The mean soil erosion rates of Longji Rice Terraces estimated by ^(239+240)Pu and ^(137)Cs tracer methods were 5.44 t/(ha·a)and 5.16 t/(ha·a),respectively,which demonstrated that plutonium can replace ^(137)Cs as an ideal tracer for soil erosion research in the future.Landform features are the main factors affecting the distribution of plutonium and ^(137)Cs as well as soil erosion in the Longji Rice Terraces. 展开更多
关键词 soil erosion PLUTONIUM ^(137)Cs Tracer method TERRACES
下载PDF
Soil erosion differences in paired grassland and forestland catchments on the Chinese Loess Plateau
14
作者 YANG Si-qi LUO Da +1 位作者 HAN Hao JIN Zhao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1336-1348,共13页
In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rate... In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments. 展开更多
关键词 Catchment comparison soil erosion RUSLE model Vegetation effect Topography effect Spatial analysis
下载PDF
Regulation of vegetation pattern on the hydrodynamic processes of erosion on hillslope in Loess Plateau,China 被引量:1
15
作者 Guo-Qiang Yu Qian Wang +1 位作者 Li-Feng Zhu Xia Zhang 《Journal of Groundwater Science and Engineering》 2023年第1期4-19,共16页
As vegetation are closely related to soil erosion,hydrodynamic parameter changes under various vegetation pattern conditions can be used as an important basis for the research of the soil erosion mechanism.Through ups... As vegetation are closely related to soil erosion,hydrodynamic parameter changes under various vegetation pattern conditions can be used as an important basis for the research of the soil erosion mechanism.Through upstream water inflow experiments conducted on a loess hillslope,how the vegetation pattern influences the hydrodynamic processes of sediment transport was analyzed.The results show that the placement of a grass strip on the lower upslope can effectively reduce runoff erosion by 69%,relying on the efficiency of regulated hydrodynamic process.The effective location of grass strip for hillslope alleviating erosion is on the lower part of the upslope,mainly due to the grass strip measure used to regulate the hydrodynamic system.As a result,the underlying surface runoff resistance is increased by 5 times,runoff shear stress is decreased by more than 90%,and runoff power decreased by over 92%.The measure greatly separates the scouring energy of surface runoff that acts on the slope soil.Therefore,the use of grass strips effectively decreases the energy of runoff flowing along the slope,eliminating soil erosion to a great extent and thereby achieving a better regulation of hydrodynamic processe. 展开更多
关键词 soil erosion Grass strip Scouring experiment Sediment transport Regulating mechanism Loess Plateau
下载PDF
Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala,India,using Revised Universal Soil Loss Equation(RUSLE) and geo-information technology 被引量:35
16
作者 V.Prasannakumar H.Vijith +1 位作者 S.Abinod N.Geetha 《Geoscience Frontiers》 SCIE CAS 2012年第2期209-215,共7页
A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore... A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas. 展开更多
关键词 soil erosion Revised Universal soil Loss Equation (RUSLE)GIS Pamba Western Ghats KERALA
下载PDF
A review of soil erodibility in water and wind erosion research 被引量:14
17
作者 SONGYang LIULianyou YANPing CAOTong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第2期167-176,共10页
Soil erodibility is an important index to evaluate the soil sensitivity to erosion. The research on soil erodibility is a crucial tache in understanding the mechanism of soil erosion. Soil erodibility can be evaluated... Soil erodibility is an important index to evaluate the soil sensitivity to erosion. The research on soil erodibility is a crucial tache in understanding the mechanism of soil erosion. Soil erodibility can be evaluated by measuring soil physiochemical properties, scouring experiment, simulated rainfall experiment, plot experiment and wind tunnel experiment. We can use soil erosion model and nomogram to calculate soil erodibility. Many soil erodibility indices and formulae have been put forward. Soil erodibility is a complex concept, it is influenced by many factors, such as soil properties and human activities. Several obstacles restrict the research of soil erodibility. Firstly, the research on soil erodibility is mainly focused on farmland; Secondly, soil erodibility in different areas cannot be compared sufficiently; and thirdly, the research on soil erodibility in water-wind erosion is very scarce. In the prospective research, we should improve method to measure and calculate soil erodibility, strengthen the research on the mechanism of soil erodibility, and conduct research on soil erodibility by both water and wind agents. 展开更多
关键词 soil erosion soil erodibility MEASUREMENT CALCULATION MECHANISM
下载PDF
Modelling and mapping soil erosion potential in China 被引量:13
18
作者 TENG Hong-fen HU Jie +2 位作者 ZHOU Yue ZHOU Lian-qing SHI Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期251-264,共14页
Soil erosion is an important environmental threat in China.However,quantitative estimates of soil erosion in China have rarely been reported in the literature.In this study,soil loss potential in China was estimated b... Soil erosion is an important environmental threat in China.However,quantitative estimates of soil erosion in China have rarely been reported in the literature.In this study,soil loss potential in China was estimated by integrating satellite images,field samples,and ground observations based on the Revised Universal Soil Loss Equation(RUSLE).The rainfall erosivity factor was estimated from merged rainfall data using Collocated CoKriging(ColCOK)and downscaled by geographically weighted regression(GWR).The Random Forest(RF)regression approach was used as a tool for understanding and predicting the relationship between the soil erodibility factor and a set of environment factors.Our results show that the average erosion rate in China is 1.44 t ha^(–1) yr^(–1).More than 60%of the territory in China is influenced by soil erosion limitedly,with an average potential erosion rate less than 0.1 t ha^(–1) yr^(–1).Other unused land and other forested woodlands showed the highest erosion risk.Our estimates are comparable to those of runoff plot studies.Our results provide a useful tool for soil loss assessments and ecological environment protections. 展开更多
关键词 soil erosion POTENTIAL RUSLE MAPPING MODELLING
下载PDF
Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China 被引量:30
19
作者 LongShan ZHAO XinLan LIANG FaQi WU 《Journal of Arid Land》 SCIE CSCD 2014年第4期400-409,共10页
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and the... As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment. 展开更多
关键词 tillage practice soil surface roughness overland flow water erosion Loess Plateau
下载PDF
Soil erosion and management on the Loess Plateau 被引量:15
20
作者 CAI Qiang-guo (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第1期53-70,共18页
The Loess Plateau is well known to the world for its intense soil erosion. The root cause for river sedimentation of Yellow River (Huanghe) and its resultant “hanging river” in certain section is soil and water loss... The Loess Plateau is well known to the world for its intense soil erosion. The root cause for river sedimentation of Yellow River (Huanghe) and its resultant “hanging river” in certain section is soil and water loss on the Loess Plateau. The Loess Plateau has a long cultivation history, hence population growth, vegetation degeneration and plugging constitute the chief reason for serious soil and water loss on Loess Plateau. This paper analyses several successful cases and failures in soil conservation, presents practical soil conservation technique and related benefit analysis, and discusses some effective methods adopted in China in soil erosion control, research directions and future perspectives on Loess Plateau. 展开更多
关键词 soil erosion control technique MANAGEMENT Loess Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部