The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China wa...In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China was carried out to analyze the freezing-thawing process and hydrothermal characteristics of shallow soil considering the climate influence.The results show that the maximum seasonal freezing depth under bare ground surface in this area is from 20 cm to 50 cm.The ground temperature shows a similar changing trend with air temperature,but it has lagged behind the air temperature,and the ground temperature amplitude exponentially decreases with the increase of soil depth.The seasonally frozen soil has experienced four typical stages:unfrozen period,alternate freezing period,freezing period and alternate thawing period.The freezing-thawing process is characterized by unidirectional freezing and bidirectional thawing.The water content of shallow soil is significantly affected by air temperature,evaporation and precipitation,and the soil water content shows a"low-high-low"changing trend with the increase of depth.The soil temperature and water content interact with each other,and are often coupled.The variation trend of soil moisture with time is consistent with the change trend of the ground temperature with time in each soil layer,andthe degree of consistency is higher in the near surface soil than that in the lower layer.Also,the spatial-temporal characteristics of soil moisture and temperature is that the volumetric water content and ground temperatureof near surface soil have strong variability,and the range valueKa and coefficient of variation Cvof soil water content and ground temperaturein different seasons show a decreasing trend with the increase of depth.展开更多
Objective: In this study, the influence and response relationship between the seasonal freezing-thawing process of soil and the spatial factor changes in the management and utilization of water resource processes were...Objective: In this study, the influence and response relationship between the seasonal freezing-thawing process of soil and the spatial factor changes in the management and utilization of water resource processes were explored. Methods: The monitoring equipment in this study was arranged at different altitudes, gradients, and slope directions, such as the typical forest sample area in the Dayekou Basin of the Qilian Mountains. The spatial variation characteristics of the seasonal freezing-thawing process of the soil were analyzed, and a regression model was established. Results: 1) The results of this study determined that the rate of the soil’s freezing increased with the altitude in a trend of volatility. However, the rate of the thawing of the frozen soil was found to have an opposite trend. The variation degree of the freezing-thawing process increased with the altitude in a trend of volatility. The end time of the approximate soil freezing with altitude increased in a volatility trend ahead of schedule. However, the opposite was observed in the thawing rate of the frozen soil;2) The rate of the soil’s freezing under the mosses of the spruce forest at an altitude of 3028 m was found to be the lowest. However, in the sub-alpine scrub forest at an altitude of 3300 m, a maximum in the spatial ordering was observed, with an average of 1.9 cm·d-1. The thawing rate of the frozen soil in scrub-spruce forest at an altitude of 3300 m was found to be minimal. However, in the sunny slope grassland at an altitude of 2946 m, a maximum in the spatial ordering was observed, with an average of 1.5 cm·d-1. In the spatial ordering of the variation degree of the process of freezing-thawing with an average of 1.2, the scrub-grassland at an altitude of 2518 m was found to be the lowest, and the scrub-spruce forest at an altitude of 3195 m was also low;3) The soil freezing began on approximately October 20th, and the rate of soil freezing gradually became reduced. The arrival time of the frozen soil of up to 150 cm in depth in sub-alpine scrub forest was first observed at an altitude of 3028 m. However, the scrub-spruce forest at an altitude of 3100 m did not become frozen until approximately January 12th on average. Then, the thawing rate of the frozen soil increased gradually. The end time of the thawing was earliest observed in the sunny slope grassland at an altitude of 2946 m. However, the scrub-spruce forest at an altitude of 3100 m was found to be the last to thaw, and averaged approximately July 27th. The average durations of the freezing and thawing of the soil were 77 and 121 days, respectively, and the average duration of the entire process of freezing-thawing was 199 days;4) This study’s established regression models of the duration time of frozen soil’s thaw, and the rate of frozen soil’s thaw, all passed the R test of goodness of fit, F test of variance, and t test. Conclusions: The characteristics of the seasonal freezing-thawing process of the soil with the spatial changes were seasonal. However, the characteristics under the different spatial factor influences were not the same.展开更多
The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of proje...The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.展开更多
A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800...A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott...Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dy...Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dynamic stress and displacement time histories acquired from seasonal frozen subgrade soils.Using freezing-thawing and dynamic triaxial tests and considering the amplitude and loading sequence of impact type traffic load,the residual deformation characteristics of subgrade soil under impact type traffic loads and freezing-thawing cycles is studied.It was found that under impact type traffic load,the residual deformation of soils increased sharply as the amplitude of impact type traffic load increased.It was also found that the increase in the amplitude of impact type traffic load led to the increase of residual deformation in a scale of power and exponential function.The amplitudes of impact type traffic load affect the development stress-strain path of the residual strain.After the soil experienced the proper amount of pre-vibration of the light load,residual deformation decreased by 15%.After freezing-thawing,the residual strain of soil increased as the amplitude of the impact type traffic loads increased.Also,when the amplification effect of freezing-thawing on the residual strain was basically stable,the residual deformation increased by about 10%.The peak impact type traffic load had a large effect on soil deformation after the freezing-thawing process,leading to the observation that of the earlier the peaks,the stronger the effect of freezing-thawing.After the soil was subjected to preloading with a small load,the influence of the freezing-thawing cycles gradually stabilized.The results may be useful in preventing and controlling the risk of subgrade soil failure when construction takes place spring thaw periods.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This ...The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu...Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The iron concentrations of snows,semi-melting snows,snowmelts,and ditch waters were observed in four typical microhabitats,Carex lasiocarpa marsh(Ⅰ), Calamagrostis angustifolia wet meadow(Ⅱ),dry land (Ⅲ)and paddy f...The iron concentrations of snows,semi-melting snows,snowmelts,and ditch waters were observed in four typical microhabitats,Carex lasiocarpa marsh(Ⅰ), Calamagrostis angustifolia wet meadow(Ⅱ),dry land (Ⅲ)and paddy field(Ⅳ),of Sanjiang Plain Wetland, Northeast China.Each sample was collected from three sites of one microhabitat,mixed together, filtrated with 0.45μm membrane,and tested using atomic absorption spectrometry(AAS)for iron measurement.The iron concentrations of soil solutions were investigated as well.Each soil solution was in-situ extracted by negative pressure,filtrated with 0.45μm membrane,and tested using AAS,too. The results showed that the wet precipitation of iron from snow were little to detect.The loss of iron was attributed to the interaction of water and soil surface. The iron concentrations of snowmelts were 7.4,15,展开更多
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro...Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics.展开更多
Biochar has been used as a soil amendment for heavy metal-contaminated soils, and it has the potential to mitigate Cd accumulation in plants. In this study, we used rice straw biochar(RSB) and kitchen waste biochar(KW...Biochar has been used as a soil amendment for heavy metal-contaminated soils, and it has the potential to mitigate Cd accumulation in plants. In this study, we used rice straw biochar(RSB) and kitchen waste biochar(KWB) to clarify the effect of biochar on Cd-contaminated neutral soil, the physiological responses to biochar application, and the gene regulatory networks in a rice genotype.展开更多
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.
基金This study was funded by the National Natural Science Foundation of China(grant number 51769013)the Basic Research Innovation Group of Gansu Province(20JR5RA478).
文摘In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China was carried out to analyze the freezing-thawing process and hydrothermal characteristics of shallow soil considering the climate influence.The results show that the maximum seasonal freezing depth under bare ground surface in this area is from 20 cm to 50 cm.The ground temperature shows a similar changing trend with air temperature,but it has lagged behind the air temperature,and the ground temperature amplitude exponentially decreases with the increase of soil depth.The seasonally frozen soil has experienced four typical stages:unfrozen period,alternate freezing period,freezing period and alternate thawing period.The freezing-thawing process is characterized by unidirectional freezing and bidirectional thawing.The water content of shallow soil is significantly affected by air temperature,evaporation and precipitation,and the soil water content shows a"low-high-low"changing trend with the increase of depth.The soil temperature and water content interact with each other,and are often coupled.The variation trend of soil moisture with time is consistent with the change trend of the ground temperature with time in each soil layer,andthe degree of consistency is higher in the near surface soil than that in the lower layer.Also,the spatial-temporal characteristics of soil moisture and temperature is that the volumetric water content and ground temperatureof near surface soil have strong variability,and the range valueKa and coefficient of variation Cvof soil water content and ground temperaturein different seasons show a decreasing trend with the increase of depth.
文摘Objective: In this study, the influence and response relationship between the seasonal freezing-thawing process of soil and the spatial factor changes in the management and utilization of water resource processes were explored. Methods: The monitoring equipment in this study was arranged at different altitudes, gradients, and slope directions, such as the typical forest sample area in the Dayekou Basin of the Qilian Mountains. The spatial variation characteristics of the seasonal freezing-thawing process of the soil were analyzed, and a regression model was established. Results: 1) The results of this study determined that the rate of the soil’s freezing increased with the altitude in a trend of volatility. However, the rate of the thawing of the frozen soil was found to have an opposite trend. The variation degree of the freezing-thawing process increased with the altitude in a trend of volatility. The end time of the approximate soil freezing with altitude increased in a volatility trend ahead of schedule. However, the opposite was observed in the thawing rate of the frozen soil;2) The rate of the soil’s freezing under the mosses of the spruce forest at an altitude of 3028 m was found to be the lowest. However, in the sub-alpine scrub forest at an altitude of 3300 m, a maximum in the spatial ordering was observed, with an average of 1.9 cm·d-1. The thawing rate of the frozen soil in scrub-spruce forest at an altitude of 3300 m was found to be minimal. However, in the sunny slope grassland at an altitude of 2946 m, a maximum in the spatial ordering was observed, with an average of 1.5 cm·d-1. In the spatial ordering of the variation degree of the process of freezing-thawing with an average of 1.2, the scrub-grassland at an altitude of 2518 m was found to be the lowest, and the scrub-spruce forest at an altitude of 3195 m was also low;3) The soil freezing began on approximately October 20th, and the rate of soil freezing gradually became reduced. The arrival time of the frozen soil of up to 150 cm in depth in sub-alpine scrub forest was first observed at an altitude of 3028 m. However, the scrub-spruce forest at an altitude of 3100 m did not become frozen until approximately January 12th on average. Then, the thawing rate of the frozen soil increased gradually. The end time of the thawing was earliest observed in the sunny slope grassland at an altitude of 2946 m. However, the scrub-spruce forest at an altitude of 3100 m was found to be the last to thaw, and averaged approximately July 27th. The average durations of the freezing and thawing of the soil were 77 and 121 days, respectively, and the average duration of the entire process of freezing-thawing was 199 days;4) This study’s established regression models of the duration time of frozen soil’s thaw, and the rate of frozen soil’s thaw, all passed the R test of goodness of fit, F test of variance, and t test. Conclusions: The characteristics of the seasonal freezing-thawing process of the soil with the spatial changes were seasonal. However, the characteristics under the different spatial factor influences were not the same.
基金supported by National Natural Science Funds of China(Nos.41771066,41825015)the Science and Technology Project of Yalong River Hydropower Development Company(No.LHKA-G201906)。
文摘The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.
基金supported by the Key Tech-nologies R&D Program of China during the 11th Five-Year Plan period (2006BAD17B02)Central Public Research Institutes Basic Funds for Research and Development (Institute of Agro-Environmental Protection,Ministry of Agriculture), China
文摘A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金supported by the National Natural Science Foundation of China(32071968)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(22)2015))the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金Fundamental Research Foundation for Universities of Heilongjiang Province under Grant No.2018-KYYWF-1651Natural Science Foundation of Heilongjiang Province under Grant Nos.ZD2019E009 and E2016045+1 种基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2018D12 and 2019D16National Natural Science Foundation of China under Grant No.51378164。
文摘Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dynamic stress and displacement time histories acquired from seasonal frozen subgrade soils.Using freezing-thawing and dynamic triaxial tests and considering the amplitude and loading sequence of impact type traffic load,the residual deformation characteristics of subgrade soil under impact type traffic loads and freezing-thawing cycles is studied.It was found that under impact type traffic load,the residual deformation of soils increased sharply as the amplitude of impact type traffic load increased.It was also found that the increase in the amplitude of impact type traffic load led to the increase of residual deformation in a scale of power and exponential function.The amplitudes of impact type traffic load affect the development stress-strain path of the residual strain.After the soil experienced the proper amount of pre-vibration of the light load,residual deformation decreased by 15%.After freezing-thawing,the residual strain of soil increased as the amplitude of the impact type traffic loads increased.Also,when the amplification effect of freezing-thawing on the residual strain was basically stable,the residual deformation increased by about 10%.The peak impact type traffic load had a large effect on soil deformation after the freezing-thawing process,leading to the observation that of the earlier the peaks,the stronger the effect of freezing-thawing.After the soil was subjected to preloading with a small load,the influence of the freezing-thawing cycles gradually stabilized.The results may be useful in preventing and controlling the risk of subgrade soil failure when construction takes place spring thaw periods.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金The financial supports of the National Natural Science Foundation of China(Grant No.42177148)the opening fund of State Key Laboratory of Geohazard Prevention and Geo-environment Protection(Grant No.SKLGP 2023K011)Postdoctoral Research Project of Guangzhou(Grant No.20220402)are gratefully thanked.
文摘The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金Major Program of the National Natural Science Foundation of China under Grant No.52192675 and the 111 Project of China under Grant No.D21001。
文摘Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
文摘The iron concentrations of snows,semi-melting snows,snowmelts,and ditch waters were observed in four typical microhabitats,Carex lasiocarpa marsh(Ⅰ), Calamagrostis angustifolia wet meadow(Ⅱ),dry land (Ⅲ)and paddy field(Ⅳ),of Sanjiang Plain Wetland, Northeast China.Each sample was collected from three sites of one microhabitat,mixed together, filtrated with 0.45μm membrane,and tested using atomic absorption spectrometry(AAS)for iron measurement.The iron concentrations of soil solutions were investigated as well.Each soil solution was in-situ extracted by negative pressure,filtrated with 0.45μm membrane,and tested using AAS,too. The results showed that the wet precipitation of iron from snow were little to detect.The loss of iron was attributed to the interaction of water and soil surface. The iron concentrations of snowmelts were 7.4,15,
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
基金funded by the National Key R&D Program of China(2022YFC2601100,2021YFD1400100 and 2021YFC2600400)the National Natural Science Foundation of China(42207162)。
文摘Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics.
基金supported by the Natural Science Foundation of Zhejiang Province, China (Grant No.LZ22D030001)the Pionee and Leading Goose R&D Program of Zhejiang Province, China (Grant No.2023C02014)+1 种基金the Sichuan Financial Special Project, China (Grant No.2021ZYGG-002)the Central Public-Interest Scientific Institution Basal Research Fund, China (Grant No.CPSIBRF-CNRRI-202121)。
文摘Biochar has been used as a soil amendment for heavy metal-contaminated soils, and it has the potential to mitigate Cd accumulation in plants. In this study, we used rice straw biochar(RSB) and kitchen waste biochar(KWB) to clarify the effect of biochar on Cd-contaminated neutral soil, the physiological responses to biochar application, and the gene regulatory networks in a rice genotype.