期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau 被引量:39
1
作者 管晓丹 黄建平 +2 位作者 郭铌 闭建荣 王国印 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期692-700,共9页
Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to... Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau. 展开更多
关键词 soil moisture surface albedo soil heat capacity soil thermal conductivity soil thermal diffusivity AMSR-E soil moisture product Loess Plateau
下载PDF
Relationships Between Surface Albedo,Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu,Northeastern China 被引量:31
2
作者 刘辉志 王宝民 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期757-764,共8页
Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations... Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture. 展开更多
关键词 surface albedo soil heat capacity soil thermal conductivity soil thermal diffusivity soil moisture
下载PDF
Effects of biodegradable mulch on soil water and heat conditions,yield and quality of processing tomatoes by drip irrigation 被引量:3
3
作者 JIA Hao WANG Zhenhua +4 位作者 ZHANG Jinzhu LI Wenhao REN Zuoli JIA Zhecheng WANG Qin 《Journal of Arid Land》 SCIE CSCD 2020年第5期819-836,共18页
To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in... To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis. 展开更多
关键词 biodegradable plastic mulch processing tomato water use efficiency soil water and heat comprehensive evaluation regional agricultural sustainability XINJIANG
下载PDF
Water and heat transport in hilly red soil of southern China:II. Modeling and simulation 被引量:2
4
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期338-345,共8页
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi... Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution. 展开更多
关键词 Red soil Coupled transfer of soil water and heat Simulation model VALIDATION Sensitivity analysis
下载PDF
Thermodynamic Properties of NH_4^+ Fixation in Manured Loess Soil in Shaanxi Province, China 被引量:4
5
作者 FANXIAOLIN JUANGTZOCHUAN 《Pedosphere》 SCIE CAS CSCD 1997年第1期49-58,共10页
Some thermodynamic properties of NHk fixation by loess soil in plowing and clay layers are discussed.The. results indicate that the four ion adsorption equations commonly used can describe the properties of NHk fixati... Some thermodynamic properties of NHk fixation by loess soil in plowing and clay layers are discussed.The. results indicate that the four ion adsorption equations commonly used can describe the properties of NHk fixation in these soils under constant temperature. Among the four adsorption equations, the singlesurface Langmuir equation is the best. When the concentration of NH4Cl solution is 10-1 mol below, the Freundlich equation can be used.The changes of apparent standard free energy (△Go), enthalpy (△Ho) and entropy (△So) illustrate that NHk fixation in soil is an endothermic adsorption and spontaneous reaction, and the process can be enhanced by a higher temperature and clay content in soil.The "proper value of NHk fixation by soil (K1×qm) increased with increasing clay content and temperature. The heat of NHk fixation in soil (Qm) confirms the conclusions made in this paper. 展开更多
关键词 NH fixation free energy ENTHALPY ENTROPY heat of NH_4^+ fixation in soil
下载PDF
The Influence of Heated Soil in Crop of“Tamaris”Tomato Plants on the Biological Activity of the Rhizosphere Soil
6
作者 Lidia Sas Paszt Pawel Trzciński +3 位作者 Malgorzata Bakalarska Ryszard Holownicki Pawel Konopacki Waldemar Treder 《Advances in Microbiology》 2014年第4期191-201,共11页
The aim of this study was to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. In addition... The aim of this study was to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. In addition, these media were tested in two different containers: cylinders and slabs. The total number of bacteria and fungi was significantly higher in the peat substrate than in the coconut substrate. A much higher number of beneficial bacteria producing spores were noted in the coconut soil. The total number of bacteria and fungi was modified by the heating levels. In all the experimental treatments, most of the identified individuals belonged to the group of nematodes that feed on bacteria and it was the most diverse group of species. The highest total number of nematodes was recorded for the second heating level, with the exception of cultivation carried out in peat slabs, where the most of nematodes were found at the control level. The highest first crop was produced by plants growing on the peat slabs supplied with the highest soil temperature. Tomato roots of all the control treatments showed the highest root morphological parameters. 展开更多
关键词 Heated soil Root Morphology TOMATO PEAT Coconut Fibre Cylinder Slab Bacteria FUNGI Nematodes
下载PDF
Exploration of regional surface average heat flow from meteorological and geothermal series 被引量:1
7
作者 刘迁迁 魏东平 +1 位作者 孙振添 张晓惠 《Applied Geophysics》 SCIE CSCD 2013年第4期496-505,513,共11页
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly... We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent. 展开更多
关键词 Meteorological and geothermal series Surface average heat flow Heat flow soil thermal diffusivity soil volumetric specific heat
下载PDF
Observation and Study of Land Surface Parameters over Gobi in Typical Arid Region 被引量:15
8
作者 张强 曹晓彦 +1 位作者 卫国安 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第1期121-135,共15页
According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using th... According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using the data observed during the intensive observation period of the Dunhuang Land–Surface Process Field Experiment (DLSPFE) (May–June 2000). Using the relative reflection as weighting factor, the weighted mean of the surface albedo over Dunhuang Gobi in typical arid region is calculated and its values are 0.255 ± 0.021. After canceling the interference of the buildings, the mean values of the roughness length averaged with logarithm is 0.0019 ± 0.00071 m. After removing the influence of the oasis, the soil wetness factor computed with data under condition of no precipitation is 0.0045. After removing the influence of the precipitation , the mean values of the soil heat capacity over Dunhuang Gobi in typical arid region is 1.12 × 10<SUP>6</SUP> J m<SUP>&#8722;3</SUP>K<SUP>&#8722;1</SUP>, a bit smaller than the values observed in HEIFE. But the soil heat diffusivity and conductivity are about one of those observed in HEIFE. The soil water content over Dunhuang Gobi in typical synoptic condition is very little and does not exceed 1% basically. 展开更多
关键词 GOBI Land surface parameters Restraining factor to evaoration Surface albedo Roughness length soil heat diffusivity
下载PDF
Estimation of ground heat flux and its impact on the surface energy budget for a semi-arid grassland 被引量:11
9
作者 JinQing Zuo JieMin Wang +3 位作者 JianPing Huang WeiJing Li GuoYin Wang HongLi Ren 《Research in Cold and Arid Regions》 2011年第1期41-50,共10页
Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using obse... Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site. 展开更多
关键词 soil heat flux harmonic analysis TDEC method self-calculating heat flux plate surface energy budget
下载PDF
Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China
10
作者 Xue-yang Yu Si-yuan Ye +4 位作者 Li-xin Pei Liu-juan Xie Ken W.Krauss Samantha K.Chapman Hans Brix 《China Geology》 CAS CSCD 2023年第4期594-610,共17页
Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in ... Passive-warming, open-top chambers(OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated.The authors also quantified the preliminary influence of experimental chamber warming on plant traits.OTCs produced an elevated average air temperature of 0.8°C(relative to controls) during the growing season(June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from-2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soilatmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes(Panjin and Yancheng). 展开更多
关键词 Open-top chambers(OTCs)warming Phragmites australis wetland Short-term ecosystem impact Climate warming soil heat flux soil-atmosphere heat transfer Ecological geological engineering Hydrogeological engineering Yellow River Delta
下载PDF
Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau 被引量:14
11
作者 ZHANG Qiang LI HongYu ZHAO JianHua 《Science China Earth Sciences》 SCIE EI CAS 2012年第4期580-589,共10页
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac... Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%. 展开更多
关键词 land surface energy imbalance Loess Plateau vertical sensible heat advection soil heat storage vertical velocity tem-perature gradient
原文传递
Effects of the Soil Heat Flux Estimates on Surface Energy Balance Closure over a Semi-Arid Grassland 被引量:6
12
作者 岳平 张强 +2 位作者 牛生杰 成华 王西育 《Acta meteorologica Sinica》 SCIE 2011年第6期774-782,共9页
Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and... Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and soil temperature gradients at a semi-arid grassland in Xilingguole, Inner Mongolia, China from June to September 2008, the characters of the SEB for the semi-arid grassland were analyzed. Firstly, monthly averaged diurnal variations of SEB components were revealed. A 30-min forward phase displacement of soil heat flux (G) observed by a fluxplate at the depth of 5-em below the soil surface was conducted and its effect on the SEB was studied. Secondly, the surface soil heat flux (Gs) was computed by using harmonic analysis and the effect of the soil heat storage between the surface and the fluxplate on the SEB was examined. The results show that with the 30-min forward phase displacement of observed G, the slope of the ordinary linear regression (OLR) of turbulent fluxes (H+LE) against available energy (Rn G) increased from 0.835 to 0.842, i.e., the closure ratio of SEB increased by 0.7%, yet energy imclosure of 15.8% still existed in the SEB. When Gs, instead of G was used in the SEB equation, the slope of corresponding OLR of (H+LE) against (Rn-Gs) reached 0.979, thereby the imelosure ratio of SEB was reduced to only 2.1%. 展开更多
关键词 soil heat flux surface energy balance harmonic analysis turbulent fluxes available energy
原文传递
A soil water and heat transfer model including changes in soil frost and thaw fronts 被引量:6
13
作者 WANG AiWen XIE ZhengHui +2 位作者 FENG XiaoBing TIAN XiangJun QIN PeiHua 《Science China Earth Sciences》 SCIE EI CAS 2014年第6期1325-1339,共15页
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges bet... Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model. 展开更多
关键词 soil frost and thaw fronts soil water and heat transfer model moving-boundary problems
原文传递
An ignored key link in greenhouse effect:Soil and soil CO_(2) slow heat loss 被引量:2
14
作者 Weixin Zhang Chengde Yu +4 位作者 Zhifeng Shen Shu Liu Suli Li Yuanhu Shao Shenglei Fu 《Soil Ecology Letters》 CAS 2020年第4期308-316,共9页
The ever-increasing atmospheric CO_(2) concentration is a key driver of modern global warming.However,the low heat capacity of atmosphere and strong convection processes in the troposphere both limit heat retention.Gi... The ever-increasing atmospheric CO_(2) concentration is a key driver of modern global warming.However,the low heat capacity of atmosphere and strong convection processes in the troposphere both limit heat retention.Given the higher heat capacity and CO_(2) concentration in soil compared to the atmosphere,the direct contributions of soil to the greenhouse effect may be significant.By experimentally manipulating CO_(2) concentrations both in the soil and the atmosphere,we demonstrated that the soil-retained heat and the slower soil heat transmission decrease the amount of heat energy leaking from the earth.Furthermore,the soil air temperature was affected by soil CO_(2) concentration,with the highest value recorded at 7500 ppm CO_(2).This study indicates that soil and soil CO_(2),together with atmospheric CO_(2),play a crucial role in the greenhouse effect.The spatial and temporal heterogeneity of soils and soil CO_(2) should be further investigated,given their potentially significant influence on global climate change. 展开更多
关键词 soil CO_(2)concentration soil temperature Atmosphere temperature soil heat loop Earth heat balance
原文传递
An improved algorithm to estimate the surface soil heat flux over a heterogeneous surface: A case study in the Heihe River Basin 被引量:1
15
作者 LI NaNa JIA Li LU Jing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第7期1169-1181,共13页
Surface soil heat flux(G0) is an indispensable component of the surface energy balance and plays an important role in the estimation of surface evapotranspiration(ET). This study calculated G0 in the Heihe River Basin... Surface soil heat flux(G0) is an indispensable component of the surface energy balance and plays an important role in the estimation of surface evapotranspiration(ET). This study calculated G0 in the Heihe River Basin based on the thermal diffusion equation, using the observed soil temperature and moisture profiles, with the aim to analyze the spatial-temporal variations of G0 over the heterogeneous area(with alpine grassland, farmland, and forest). The soil ice content was estimated by the difference in liquid soil water content before and after the melting of the frozen soil and its impact on the calculation of G0 was further analyzed. The results show that:(1) the diurnal variation of G0 is obvious under different underlying surfaces in the Heihe River Basin, and the time when the daily maximum value of G0 occurs is a few minutes to several hours earlier than that of the net radiation flux, which is related to the soil texture, soil moisture, soil thermal properties, and the vegetation coverage;(2) the net radiation flux varies with season and reaches the maximum in summer and the minimum in winter, whereas G0 reaches the maximum in spring rather than in summer, because more vegetation in summer hinders energy transfer into the soil;(3) the proportions of G0 to the net radiation flux are different with seasons and surface types, and the mean values in January are 25.6% at the Arou site, 22.9% at the Yingke site and 4.3% at the Guantan site, whereas the values in July are 2.3%, 1.6% and 0.3%, respectively; and(4) G0 increases when the soil ice content is included in thermal diffusion equation, which improves the surface energy balance closure by 4.3%. 展开更多
关键词 surface soil heat flux soil ice content surface energy balance heterogeneous surfaces
原文传递
Comparative Study on Methods for Computing Soil Heat Storage and Energy Balance in Arid and Semi-Arid Areas 被引量:2
16
作者 李源 刘树华 +2 位作者 王姝 缪育聪 陈笔澄 《Journal of Meteorological Research》 SCIE 2014年第2期308-322,共15页
Observations collected in the Badan Jaran desert hinterland and edge during 19-23 August 2009 and in the Jinta Oasis during 12-16 June 2005 are used to assess three methods for calculating the heat storage of the5-20-... Observations collected in the Badan Jaran desert hinterland and edge during 19-23 August 2009 and in the Jinta Oasis during 12-16 June 2005 are used to assess three methods for calculating the heat storage of the5-20-cm soil layer.The methods evaluated include the harmonic method,the conduction-convection method,and the temperature integral method.Soil heat storage calculated using the harmonic method provides the closest match with measured values.The conduction-convection method underestimates nighttime soil heat storage.The temperature integral method best captures fluctuations in soil heat storage on sub-diurnal timescales,but overestimates the amplitude and peak values of the diurnal cycle.The relative performance of each method varies with the underlying land surface.The land surface energy balance is evaluated using observations of soil heat flux at 5-cm depth and estimates of ground heat flux adjusted to account for soil heat storage.The energy balance closure rate increases and energy balance is improved when the ground heat flux is adjusted to account for soil heat storage.The results achieved using the harmonic and temperature integral methods are superior to those achieved using the conduction-convection method. 展开更多
关键词 soil heat storage harmonic method conduction-convection method temperature integral method surface energy balance
原文传递
A Reexamination of Methods of Hierarchic Composition in the AHP 被引量:7
17
作者 ZHANG Zhi-yong Economics and Management Department, Xi′an Petroleum University, Xi′an 710065, Shaanxi Province, China 《Systems Science and Systems Engineering》 CSCD 2002年第4期503-510,共8页
This paper demonstrates that we should use two different hierarchic composition methods for the two different types of levels in the AHP. The first method is using the weighted geometric mean to synthesize the judgmen... This paper demonstrates that we should use two different hierarchic composition methods for the two different types of levels in the AHP. The first method is using the weighted geometric mean to synthesize the judgments of alternative-type-level elements, which is the only hierarchic composition method for the alternative-type level in an AHP hierarchy, and the rank is preserved automatically. The second one is using the weighted arithmetic mean to synthesize the priorities of the criteria-type-level elements, which is the only hierarchic composition method for all the criteria-type levels, and rank reversals are allowed. 展开更多
关键词 analytic hierarchy process multicriteria analysis decision theory hierarchic composition priority synthesis rank preservation and reversal of the soil thermodynamic parameters such as the soil thermal conductivity soil heat capacity so
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部