The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)> middle recovered degree(MRD)> low recovered degree(LRD)> very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
By using French SPOT5 satellite remote sensing image to contrast on the spot,the forest vegetation in Fuxian Lake basin was categorized into 23 forest types,6 vegetation subtypes,5 vegetation types,and the areas were ...By using French SPOT5 satellite remote sensing image to contrast on the spot,the forest vegetation in Fuxian Lake basin was categorized into 23 forest types,6 vegetation subtypes,5 vegetation types,and the areas were respectively calculated.The tree species structure and the coverage degree of every kind of forest vegetation were investigated,and the characteristics of forest vegetation were analyzed.The results showed that the soil conservation amount of forest in Fuxian Lake basin was 137.50×106 t/a,and the soil conservation value was 622.30×106 yuan/a.Moreover,the water source conservation value was 506.84×106 yuan/a.展开更多
[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted res...[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.展开更多
The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, an...The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, and the average CI and Na+ contents were 0.27% and 0.22%, respectively. Presenting zonal distribution feature, the soil total salt content increased gradually from west to east of Binhai New Area. Statistics on the distribution areas of different salinization degrees showed that the area of non-salinzed soils only accounted for 3.18% of the total area; with an area of 107.43 km2, mild saline soil accounted for 6.34% of the total area; the area of moderate saline soil was 173.51 km2, accounting for 10.24%; and the area of sal- inzed soils was 217.36 km2, accounting for 12.82% of the total soil area. The area of saline soils (total salt content 〉0.6%) was 1 142.8 km2, accounting 67.42% of the total land area in Binhai New Area. And the areas for the soils with total salt content of 0.6%-1.0%, 1.0%-1.5%, 〉1.5% were respectively 388.47, 411.82, 342.51 km2, accounting for 22.92%, 24.3%, 20.21% of the total area.展开更多
[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbo...[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.展开更多
[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple...[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.展开更多
Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary ...Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary forest (25 y) and the re- sults showed that physical property of soil was not a simple "improvement" process during land type evolution. Specifically, from farmland to secondary forest, the con- tent of topsoils changed from being washed away to accumulation and soil bulk density changed from increasing to decreasing. For example, soil bulk densities of abandoned farmland and shrub land increased by 6.6% and 11.57% compared with farmland, and of sparse wood land and forest land decreased by 5.0% and 10.0%. The change trend of soil bulk density was just in contrary to total porosity. Available water capacity was the lowest of shrub land, but increased in rest land types. The increase tended to be volatile in 5.1%-12.5% of different land types and water-sta- ble aggregate content (〉0.25 mm) reached the highest of sparse wood land. The destruction rate, however, was declining in the process of land type evolution and the increase was in the range of 34.0%-64.7% compared with farmland. The de- struction rate of aggregate was of negative correlation with organic matter. Water- holding capacity was the best of forest land and abandoned farmland and the poor- est of shrub land, close to sparse wood land. Water-supplying capacity from high to low was as follows: farmland〉sparse wood land〉secondary forest〉shrub land〉a- bandoned farmland. It is obvious that water-holding capacity and water-supplying capacity are not consistent, but both are closely related to the content of soil clays, porosity, and aggregate stability.展开更多
The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distri...The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.展开更多
Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore...Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.展开更多
[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shula...[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.展开更多
[Objective] The aim was to study the distribution characteristics of soil pH values and its correlation with soil nutrients in tobacco-growing areas. [Method] Soil nutrients of 43 samples from tobacco-growing areas in...[Objective] The aim was to study the distribution characteristics of soil pH values and its correlation with soil nutrients in tobacco-growing areas. [Method] Soil nutrients of 43 samples from tobacco-growing areas in Dali City were analyzed.[Results] The results showed that average pH value of tobacco-planting soil in Dali City was 6.52, soil samples which suited for flue-cured tobacco cultivation accounted for 72.09% of total soil samples. In four soil types of tobacco-growing areas, the pH values in a descending order were as follows: alluvial soil〉 paddy soil 〉purple soil〉 red soil. At the altitude range of 1 780-2 200 m, soil pH values showed a gradual decreasing trend. The average contents of soil organic matters were relatively abundant and generally suited for high-quality tobacco cultivation; the average contents of soil alkali-hydrolyzable nitrogen, available phosphorus, exchangeable calcium and exchangeable magnesium were generally at medium and abundant level, however,their rations under the medium level in some tobacco-growing areas were 6.98%,11.63%, 2.33% and 4.65%, respectively; moreover, soil with lower available potassium contents occupied a large proportion, namely 58.14%. [Conclusion] Soil pH values had significant correlation with exchangeable magnesium and exchangeable magnesium, however, they had no significant correlation with other soil nutrients.展开更多
In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected ...In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected from a typical industry- based peri-urban area of about 8 km^2 in Wuxi, China, to study the accumulation and distribution of As, Hg, Cu, Zn, Pb, Cr, and Cd in comparison with heavy metal contents in soils near developed industrial sites (Guangzhou, China; Wallsend Burn of Tyneside, UK; and Osnabrück, Germany). Kriging interpolation was used to determine the metals, spatial distribution. The results showed that most soils, compared to the background values, contained elevated contents of As, Hg, Cu, Zn, and Pb with some having elevated contents of Cd and Cr. Except for less than 10% of the soil samples of Cu, Zn and Cd contents, these heavy metal contents were lower than the soil threshold levels of the Grade Ⅱ criteria for the Chinese environmental quality standard. Probably, because of the scattered distribution and diversity of industries in the study area, spatial distributions of these heavy metals from Kriging interpolation indicated little similarity. Nevertheless, when compared with other areas in the Taihu Lake region, mean contents of Cu, Zn, Pb, and Cd were relatively high in the Wuxi peri-urban area. Additionally, compared to soils in agricultural areas around Guangzhou, Osnabrück, or Wallsend Burn, contents of most heavy metals in soils from this area were lower.展开更多
Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its re...Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its relationships with some other elements in natural soil in the area.The average concentration of Se in Daba Mountain soils was 14.3 times higher than the value cited for natural soil background worldwide,suggesting that soils in the region were contaminated by the element.The finding was confirmed...展开更多
Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochem...Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils.展开更多
Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed un...Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed under a petrographic microscope, and its image is quantitatively measured by LEICAL Qwin 2.6 software. Micromorphological observations of the thin sections show that the assemblage of minerals in different horizons is very similar, which is mainly composed of Q and P1. However, there are obvious differences in C/F15μm ratio, mineral content, and coarse features. The pedofeatures is mainly composed of clay, calcite, and amorphous Fe. Ap horizon is characterized by abundant needleshaped secondary calcite, secondary clay, and earthworm fecal pellet. BC horizon is characterized by a large quantity of secondary calcite with various shapes. Bt1and Bt2 horizons are characterized by abundant clay hypocoatings and a small quantity of secondary calcite. All the results of this research suggest that Earth-cumulic Orthic Anthrosols consist of both the upper Ap horizon, which cause loessal dung and eolian dust deposition, and cultivation occurs simultaneously during the process of Ap horizon-formation, and the lower BC horizon, which is aeolian sedimentary at the time of relative aridity during late Holocene.展开更多
Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the ...Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.展开更多
Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil...Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.展开更多
Based on the results of multipurpose regional geochemical surveys of the Guizhou Province, geochemical characteristics of soil Se and Se-rich land resources in the central area of Guiyang City were studied and evaluat...Based on the results of multipurpose regional geochemical surveys of the Guizhou Province, geochemical characteristics of soil Se and Se-rich land resources in the central area of Guiyang City were studied and evaluated.Major conclusions are as follows:(1) the Se content in surface soil of the central area of Guiyang City was 0.17–2.89 mg kg^(-1), and the average was 0.78 mg kg^(-1), which were respectively 2.6 and 3.9 times of the national background value of soil and the world background value of soil.The Se content in deep soil was 0.11–1.48 mg kg^(-1), and the average was 0.44 mg kg^(-1), which were respectively 1.5 and2.2 times of the national background value of soil and the world background value of soil. The soil Se content decreased with the increase in the soil depth on the vertical profile, and the surface soil had a higher Se content.(2)Distribution of Se content was mainly affected by parent material, physicochemical properties of soil and other components, soil type, and land use type. Parent material played a key role, as the soil Se content was mainly originated from parent rock and increased with the background value of Se in parent rock, physicochemical properties of soil and other components had certain influences upon the Se content. Se was shown to have a significant linear positive correlation with S and organic carbon but no significant correlation with p H value. Se content varied with different types of soil as follows: skeleton soil > yellow soil > paddy soil > limestone soil > purple soil. Land use type also hadcertain influences upon the soil Se content as follows: dry land > construction land > garden plot > grassland =garden plot > forest land.(3) Taking 0.4 mg kg^(-1)B x(Se) <3.0 mg kg^(-1) as the standard for Se-rich soil, Se-rich soil of the study area covered an area of 2224 km^2 and 92.5% of the total area; the remaining is general soil. The study area had no Se-excess soil. Therefore, the central area of Guiyang City has a high proportion of Se-rich land, a large area of Serich land resources, and a moderate selenium enrichment strength, which have been rarely seen anywhere and provide advantageous resources for the development of Se-rich featured agriculture.展开更多
Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperatur...Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice,for example,reservoir water.The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage.The experiment set the soil temperatures at 18℃,24℃and 30℃under two irrigation methods(flood and drip irrigation),respectively.The results showed that,at the 30℃soil temperature,drip irrigation increased total root length by 53%but reduced root water conductivity by 9%compared with flood irrigation.Drip irrigation also increased leaf abscisic acid and proline concentrations by 13%and 5%,respectively.These results indicated that drip irrigated rice was under mild water stress.In the 18℃soil temperature,drip irrigation reduced hydraulic conductivity by 58%,leaf water potential by 40%and leaf net photosynthesis by 25%compared with flood irrigation.The starch concentration in male gametes was also 30%less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18℃.Therefore,the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate.Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate,which is the main reason for the reduced yield of drip irrigated rice.Overall,the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment,causing declines both in the starch content of male gametes and in pollination rate.Low temperature will ultimately affect the rice yield under drip irrigation.展开更多
Soil organic carbon(SOC)can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and th...Soil organic carbon(SOC)can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon(HFOC),and the resistant organic carbon(ROC)in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles(0–50μm)increased,both methylene blue(MB)adsorption by soil minerals and microaggregate contents increased in the 0–20 and 20–40 cm soil layers(P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals,and microaggregate content(P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region.展开更多
基金supported by the National Key R&D Program of China (Nos. 2022YFF1303301, 2022YFF1302603)the National Natural Science Foundation of China (Nos. 52179026, 42001035, 42101115)+5 种基金the Science and Technology Program of Gansu Province (Nos. 22JR5RA072, 22JR5RA068)the Postdoctoral Funding Program of Gansu Province (No. E339880139)the Natural Science Foundation of Gansu Province (No. E331040901)the Science and Technology Fund of Gansu Province (No. 23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy (No. GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions (No. HHGCKK2204)
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)> middle recovered degree(MRD)> low recovered degree(LRD)> very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金Supported by Yuxi Forest Resource Planning Design Investigation Project in Yunnan Province
文摘By using French SPOT5 satellite remote sensing image to contrast on the spot,the forest vegetation in Fuxian Lake basin was categorized into 23 forest types,6 vegetation subtypes,5 vegetation types,and the areas were respectively calculated.The tree species structure and the coverage degree of every kind of forest vegetation were investigated,and the characteristics of forest vegetation were analyzed.The results showed that the soil conservation amount of forest in Fuxian Lake basin was 137.50×106 t/a,and the soil conservation value was 622.30×106 yuan/a.Moreover,the water source conservation value was 506.84×106 yuan/a.
基金Supported by National Programs for High Technology Research and Development of China(2007AA061001)Talent Introduction Project Supported by Hunan Agricultural University Project(07YT03)~~
文摘[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.
基金Supported by the National Key Technology R&D Program during the 11th Five-Year Plan,China (2007BAD67B01)~~
文摘The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, and the average CI and Na+ contents were 0.27% and 0.22%, respectively. Presenting zonal distribution feature, the soil total salt content increased gradually from west to east of Binhai New Area. Statistics on the distribution areas of different salinization degrees showed that the area of non-salinzed soils only accounted for 3.18% of the total area; with an area of 107.43 km2, mild saline soil accounted for 6.34% of the total area; the area of moderate saline soil was 173.51 km2, accounting for 10.24%; and the area of sal- inzed soils was 217.36 km2, accounting for 12.82% of the total soil area. The area of saline soils (total salt content 〉0.6%) was 1 142.8 km2, accounting 67.42% of the total land area in Binhai New Area. And the areas for the soils with total salt content of 0.6%-1.0%, 1.0%-1.5%, 〉1.5% were respectively 388.47, 411.82, 342.51 km2, accounting for 22.92%, 24.3%, 20.21% of the total area.
基金Supported by the Work Project of China Geological Survey(1212010911062)Open Foundation of Karst Dynamics Laboratory(kdl2008-10)+1 种基金Guangxi Zhuang Autonomous Region Innovation Project(0842008)National Natural Science Foundation(40872213)~~
文摘[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.
基金Supported by Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2099)~~
文摘[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.
基金Supported by National Key Program of Science and Technology(2011BAC09B01,2006BAC01A16)Natural Science Foundation Project of Chongqing(CSTC,2009BA0002)~~
文摘Ecological efficiency changes of soil moisture were researched in karst areas with different land type uses, including farmland, abandoned farmland (1 y) and shrub land (1 y), sparse wood land (15 y), secondary forest (25 y) and the re- sults showed that physical property of soil was not a simple "improvement" process during land type evolution. Specifically, from farmland to secondary forest, the con- tent of topsoils changed from being washed away to accumulation and soil bulk density changed from increasing to decreasing. For example, soil bulk densities of abandoned farmland and shrub land increased by 6.6% and 11.57% compared with farmland, and of sparse wood land and forest land decreased by 5.0% and 10.0%. The change trend of soil bulk density was just in contrary to total porosity. Available water capacity was the lowest of shrub land, but increased in rest land types. The increase tended to be volatile in 5.1%-12.5% of different land types and water-sta- ble aggregate content (〉0.25 mm) reached the highest of sparse wood land. The destruction rate, however, was declining in the process of land type evolution and the increase was in the range of 34.0%-64.7% compared with farmland. The de- struction rate of aggregate was of negative correlation with organic matter. Water- holding capacity was the best of forest land and abandoned farmland and the poor- est of shrub land, close to sparse wood land. Water-supplying capacity from high to low was as follows: farmland〉sparse wood land〉secondary forest〉shrub land〉a- bandoned farmland. It is obvious that water-holding capacity and water-supplying capacity are not consistent, but both are closely related to the content of soil clays, porosity, and aggregate stability.
基金Supported by National Science and Technology Support Program in Twelfth Five-year Plan(2012BAD05B06)Special Funds for Excellent Young Scientific Talents in Guizhou[(2011)14]~~
文摘The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.
基金Supported by the National Basic Research Program of China(2007CB407204)~~
文摘Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.
基金Supported by National 973 Program(2010CB951500)National 863 Program(2006AA-120103)~~
文摘[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.
基金Supported by Dali Prefecture Science and Technology Planning Project--"Analysis and Evaluation on Tobacco-planting Soil of Dali Prefecture"~~
文摘[Objective] The aim was to study the distribution characteristics of soil pH values and its correlation with soil nutrients in tobacco-growing areas. [Method] Soil nutrients of 43 samples from tobacco-growing areas in Dali City were analyzed.[Results] The results showed that average pH value of tobacco-planting soil in Dali City was 6.52, soil samples which suited for flue-cured tobacco cultivation accounted for 72.09% of total soil samples. In four soil types of tobacco-growing areas, the pH values in a descending order were as follows: alluvial soil〉 paddy soil 〉purple soil〉 red soil. At the altitude range of 1 780-2 200 m, soil pH values showed a gradual decreasing trend. The average contents of soil organic matters were relatively abundant and generally suited for high-quality tobacco cultivation; the average contents of soil alkali-hydrolyzable nitrogen, available phosphorus, exchangeable calcium and exchangeable magnesium were generally at medium and abundant level, however,their rations under the medium level in some tobacco-growing areas were 6.98%,11.63%, 2.33% and 4.65%, respectively; moreover, soil with lower available potassium contents occupied a large proportion, namely 58.14%. [Conclusion] Soil pH values had significant correlation with exchangeable magnesium and exchangeable magnesium, however, they had no significant correlation with other soil nutrients.
基金Project supported by the RURBIFARM (Sustainable Farming at the Rural-Urban Interface) project of the European Union (No. ICA4-CT-2002-10021)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-427)the National Key Basic Research Support Foundation of China (No. 2002CB410810).
文摘In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected from a typical industry- based peri-urban area of about 8 km^2 in Wuxi, China, to study the accumulation and distribution of As, Hg, Cu, Zn, Pb, Cr, and Cd in comparison with heavy metal contents in soils near developed industrial sites (Guangzhou, China; Wallsend Burn of Tyneside, UK; and Osnabrück, Germany). Kriging interpolation was used to determine the metals, spatial distribution. The results showed that most soils, compared to the background values, contained elevated contents of As, Hg, Cu, Zn, and Pb with some having elevated contents of Cd and Cr. Except for less than 10% of the soil samples of Cu, Zn and Cd contents, these heavy metal contents were lower than the soil threshold levels of the Grade Ⅱ criteria for the Chinese environmental quality standard. Probably, because of the scattered distribution and diversity of industries in the study area, spatial distributions of these heavy metals from Kriging interpolation indicated little similarity. Nevertheless, when compared with other areas in the Taihu Lake region, mean contents of Cu, Zn, Pb, and Cd were relatively high in the Wuxi peri-urban area. Additionally, compared to soils in agricultural areas around Guangzhou, Osnabrück, or Wallsend Burn, contents of most heavy metals in soils from this area were lower.
文摘Daba Mountain area is one of the two endemic selenosis areas in China,which may relate with the environmental behaviors of selenium (Se) in soil.This study focuses on the concentraion and distribution of Se and its relationships with some other elements in natural soil in the area.The average concentration of Se in Daba Mountain soils was 14.3 times higher than the value cited for natural soil background worldwide,suggesting that soils in the region were contaminated by the element.The finding was confirmed...
基金The National Natural Science Foundation of China (No. 20477029)the National Basic Research Program (973) of China (No.2004CB418506)the Basic Research Program of Educational Department of Liaoning Government (No. 05L262)
文摘Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils.
文摘Using the data obtained from the LGT soil profile, this article attempts to illustrate the process of modem soil formation in the Guanzhong areas and its micromorphological features. The micromorphology is observed under a petrographic microscope, and its image is quantitatively measured by LEICAL Qwin 2.6 software. Micromorphological observations of the thin sections show that the assemblage of minerals in different horizons is very similar, which is mainly composed of Q and P1. However, there are obvious differences in C/F15μm ratio, mineral content, and coarse features. The pedofeatures is mainly composed of clay, calcite, and amorphous Fe. Ap horizon is characterized by abundant needleshaped secondary calcite, secondary clay, and earthworm fecal pellet. BC horizon is characterized by a large quantity of secondary calcite with various shapes. Bt1and Bt2 horizons are characterized by abundant clay hypocoatings and a small quantity of secondary calcite. All the results of this research suggest that Earth-cumulic Orthic Anthrosols consist of both the upper Ap horizon, which cause loessal dung and eolian dust deposition, and cultivation occurs simultaneously during the process of Ap horizon-formation, and the lower BC horizon, which is aeolian sedimentary at the time of relative aridity during late Holocene.
基金Project(21467005)supported by the National Natural Science Foundation of China
文摘Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.
基金funded by the National Natural Science Foundation of China (No. 40661010)
文摘Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.
基金supported by outstanding science and technology education personnel special funds of Guizhou Province (Specific words in Guizhou Province (2012)No.27)National multipurpose regional geochemical survey Project (GZTR20070110)
文摘Based on the results of multipurpose regional geochemical surveys of the Guizhou Province, geochemical characteristics of soil Se and Se-rich land resources in the central area of Guiyang City were studied and evaluated.Major conclusions are as follows:(1) the Se content in surface soil of the central area of Guiyang City was 0.17–2.89 mg kg^(-1), and the average was 0.78 mg kg^(-1), which were respectively 2.6 and 3.9 times of the national background value of soil and the world background value of soil.The Se content in deep soil was 0.11–1.48 mg kg^(-1), and the average was 0.44 mg kg^(-1), which were respectively 1.5 and2.2 times of the national background value of soil and the world background value of soil. The soil Se content decreased with the increase in the soil depth on the vertical profile, and the surface soil had a higher Se content.(2)Distribution of Se content was mainly affected by parent material, physicochemical properties of soil and other components, soil type, and land use type. Parent material played a key role, as the soil Se content was mainly originated from parent rock and increased with the background value of Se in parent rock, physicochemical properties of soil and other components had certain influences upon the Se content. Se was shown to have a significant linear positive correlation with S and organic carbon but no significant correlation with p H value. Se content varied with different types of soil as follows: skeleton soil > yellow soil > paddy soil > limestone soil > purple soil. Land use type also hadcertain influences upon the soil Se content as follows: dry land > construction land > garden plot > grassland =garden plot > forest land.(3) Taking 0.4 mg kg^(-1)B x(Se) <3.0 mg kg^(-1) as the standard for Se-rich soil, Se-rich soil of the study area covered an area of 2224 km^2 and 92.5% of the total area; the remaining is general soil. The study area had no Se-excess soil. Therefore, the central area of Guiyang City has a high proportion of Se-rich land, a large area of Serich land resources, and a moderate selenium enrichment strength, which have been rarely seen anywhere and provide advantageous resources for the development of Se-rich featured agriculture.
基金supported by the National High Technology Research and Development Program of China(2011AA100508)the National Natural Science Foundation of China(31471947,31860587)
文摘Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice,for example,reservoir water.The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage.The experiment set the soil temperatures at 18℃,24℃and 30℃under two irrigation methods(flood and drip irrigation),respectively.The results showed that,at the 30℃soil temperature,drip irrigation increased total root length by 53%but reduced root water conductivity by 9%compared with flood irrigation.Drip irrigation also increased leaf abscisic acid and proline concentrations by 13%and 5%,respectively.These results indicated that drip irrigated rice was under mild water stress.In the 18℃soil temperature,drip irrigation reduced hydraulic conductivity by 58%,leaf water potential by 40%and leaf net photosynthesis by 25%compared with flood irrigation.The starch concentration in male gametes was also 30%less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18℃.Therefore,the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate.Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate,which is the main reason for the reduced yield of drip irrigated rice.Overall,the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment,causing declines both in the starch content of male gametes and in pollination rate.Low temperature will ultimately affect the rice yield under drip irrigation.
基金Project supported by the National Natural Science Foundation of China(Nos.40321101 and 40071036)the Major State Basic Research Development Program of China(973 Program)(No.2002CB412503)
文摘Soil organic carbon(SOC)can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon(HFOC),and the resistant organic carbon(ROC)in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles(0–50μm)increased,both methylene blue(MB)adsorption by soil minerals and microaggregate contents increased in the 0–20 and 20–40 cm soil layers(P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals,and microaggregate content(P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region.