Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio...Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.展开更多
Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of compreh...Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.展开更多
The research progress of soil loss under the dual structure of southwest karst is systematically studied. The results show that the research of the soil erosion in karst mountainous area started late, and the basic re...The research progress of soil loss under the dual structure of southwest karst is systematically studied. The results show that the research of the soil erosion in karst mountainous area started late, and the basic research is lagging. Most of the existing research results focus on the present situation, causes and control measures of surface erosion. The view of underground soil loss in the context of karst diploid structure has been recognized by most scholars. However, limited to the research methods and the lack of observational data, the way of underground soil loss, the amount of loss and its harm are still unclear. Therefore, seeking the necessary technical means to carry out the necessary field observation from the way and process of loss is the focus of the study of soil loss under karst structure in the future.展开更多
A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore...A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.展开更多
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quanti...Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to...Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to 2004 based on RS and GIS techniques.The results showed that:(1) The soil and water loss area decreased from 1999 to 2004.(2) Soil and water loss mainly exists in purple soil,yellow soil,limestone soil,paddy soil and yellow brown soil distributed areas.(3) The dry slope land and sparse woodland that are intensively influenced by human activities experienced most serious soil and water loss.(4) Soil and water loss in the study area indicated an obvious vertical differentiation characteristic.(5) There is a significant correlation between soil and water loss and slope.(6) There is no obvious correlation between soil and water loss and aspect.(7) Soil and water loss mainly exists in the values of R between 300 and 340 distribution area.The very-high soil and water loss has obvious correlation with R.展开更多
Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environm...Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.展开更多
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef...Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural pra...In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.展开更多
Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement da...Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.展开更多
Based on field runoff plots observation and sample analysis, the effect of slope gradient on soil organic carbon loss was studied under natural rainfall conditions in loess hilly region. The results showed that with s...Based on field runoff plots observation and sample analysis, the effect of slope gradient on soil organic carbon loss was studied under natural rainfall conditions in loess hilly region. The results showed that with slope gradient increasing (from10° to 30°), the changing trend of soil erosion intensity (A) was A20°〉A30°〉A15°〉A10°〉A25°, suggesting that slope gradient between 20° and 25° was a critical degree ranger to exist. Soil organic carbon loss was mainly influenced by soil erosion intensity, appearing the same trend as did soil erosion intensity with increasing slope gradient. Soil erosion results in organic carbon enrichment in sediment. Average enrichment ratios of five runoff plots varied from 2.27 to 3.74, and decreased with increasing erosion intensity and slope gradient. The decrease of surface runoff and soil erosion is the key to reduce soil organic carbon loss.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of m...One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.展开更多
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre...Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.展开更多
Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelan...Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelands of Kyrgyzstan.Time series of C-factor,precipitation and temperature were decomposed into seasonal and trend components with STL(seasonal decomposition by loess) to assess their interrelations.C-factor,precipitation and temperature trend components indicated significant lagged correlation,whereas seasonal components indicated more complex relations with climate factors which can be promoting as well as limiting factors for vegetation development,depending on the season.Rainy springs and hot summers may increase soil loss dramatically,whereas warm and dry springs with rainy summers can decrease it.Steep slopes indicated higher soil loss ratio,whereas flat areas were better protected by vegetation.展开更多
Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation an...Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R) for the local region was established. Other factors of the universal soil loss equation (USLE model) were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region.展开更多
Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea ...Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.展开更多
Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for...Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested.展开更多
基金supported by the National Natural Science Foundation of China(42071285,42371297)the Key R&D Program Projects in Shaanxi Province of China(2022SF-382)the Fundamental Research Funds for the Central Universities(GK202302002).
文摘Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.
文摘Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.
基金Supported by the National Science&Technology Pillar Program during the Twelfth FiveYear Plan Period of China(2012BAD05B06)the Fund Program for Science and Technology of Guizhou in 2012(Qiankehe Code J LKS[2012]No.27~~
文摘The research progress of soil loss under the dual structure of southwest karst is systematically studied. The results show that the research of the soil erosion in karst mountainous area started late, and the basic research is lagging. Most of the existing research results focus on the present situation, causes and control measures of surface erosion. The view of underground soil loss in the context of karst diploid structure has been recognized by most scholars. However, limited to the research methods and the lack of observational data, the way of underground soil loss, the amount of loss and its harm are still unclear. Therefore, seeking the necessary technical means to carry out the necessary field observation from the way and process of loss is the focus of the study of soil loss under karst structure in the future.
文摘A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.
基金supported by the National Natural Science Foundation of China(Grant No.41271299)by the Opening Fund of MWR Laboratory of Soil and Water Loss Process and Control in the Loess Plateau of China(Grant NO.2017001)
文摘Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
基金National Natural Science Foundation of China,No.40801077Science & Technology Research Project Supported by Chongqing Municipal Education Commission,No.KJ070811+1 种基金Doctoral Fund of Chongqing Normal University,No.06XLB004Project by Chongqing Water Conservancy Bureau
文摘Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to 2004 based on RS and GIS techniques.The results showed that:(1) The soil and water loss area decreased from 1999 to 2004.(2) Soil and water loss mainly exists in purple soil,yellow soil,limestone soil,paddy soil and yellow brown soil distributed areas.(3) The dry slope land and sparse woodland that are intensively influenced by human activities experienced most serious soil and water loss.(4) Soil and water loss in the study area indicated an obvious vertical differentiation characteristic.(5) There is a significant correlation between soil and water loss and slope.(6) There is no obvious correlation between soil and water loss and aspect.(7) Soil and water loss mainly exists in the values of R between 300 and 340 distribution area.The very-high soil and water loss has obvious correlation with R.
基金the National Natural Science Foundation of China(31000944 and 41171231)the International Atomic Energy Agency,Vienna(18176 and 17908)+1 种基金the State Level Public Welfare Institute Basic Scientific Research Project of China(BSRF201407)the National Key Technologies R&D Program of China during the 12th Five-year Plan period(2013BAD11B03)for financial supports
文摘Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Natural Science Foundation of China(No.41571276)+1 种基金Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-JBYW-2016-33)
文摘Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.
基金supportedby the National Natural Science Foundation of China(41771035,42071047)。
文摘In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.
文摘Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.
基金the National Natural Science Foundation of China (90502007) the National Basic Research Program of China (973 Program 2007CB407206)
文摘Based on field runoff plots observation and sample analysis, the effect of slope gradient on soil organic carbon loss was studied under natural rainfall conditions in loess hilly region. The results showed that with slope gradient increasing (from10° to 30°), the changing trend of soil erosion intensity (A) was A20°〉A30°〉A15°〉A10°〉A25°, suggesting that slope gradient between 20° and 25° was a critical degree ranger to exist. Soil organic carbon loss was mainly influenced by soil erosion intensity, appearing the same trend as did soil erosion intensity with increasing slope gradient. Soil erosion results in organic carbon enrichment in sediment. Average enrichment ratios of five runoff plots varied from 2.27 to 3.74, and decreased with increasing erosion intensity and slope gradient. The decrease of surface runoff and soil erosion is the key to reduce soil organic carbon loss.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
基金the framework of the SWATCH project (Prima project)funded by the DGRSDT,Algeria
文摘One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.
基金Chinese Academy of Sciences (CAS)The World Academy of Science (TWAS) for providing financial support
文摘Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.
基金project “The Impact of the Transformation Process on Human-Environment Interactions in Southern Kyrgyzstan”funded by the Volkswagen Foundation,Hannover,Germany
文摘Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelands of Kyrgyzstan.Time series of C-factor,precipitation and temperature were decomposed into seasonal and trend components with STL(seasonal decomposition by loess) to assess their interrelations.C-factor,precipitation and temperature trend components indicated significant lagged correlation,whereas seasonal components indicated more complex relations with climate factors which can be promoting as well as limiting factors for vegetation development,depending on the season.Rainy springs and hot summers may increase soil loss dramatically,whereas warm and dry springs with rainy summers can decrease it.Steep slopes indicated higher soil loss ratio,whereas flat areas were better protected by vegetation.
文摘Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R) for the local region was established. Other factors of the universal soil loss equation (USLE model) were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region.
文摘Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.
文摘Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested.