期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effect of Different Soil Regulation Measures on Yield and Soil Fertility of Eucalyptus Plantation in Southern Guangxi
1
作者 Fei GUO Caili HUANG +2 位作者 Xiajie QIN Weijian LIAO Jiang TANG 《Meteorological and Environmental Research》 CAS 2023年第1期29-34,40,共7页
In view of the problems of decreased unit yield,soil acidification,decreased soil organic matter and soil fertility caused by high generation single pure Eucalyptus plantation in southern Guangxi,a field experiment wa... In view of the problems of decreased unit yield,soil acidification,decreased soil organic matter and soil fertility caused by high generation single pure Eucalyptus plantation in southern Guangxi,a field experiment was conducted to study the yield,soil organic matter and soil fertility under six soil conditioning measures[interplanting Tephrosia candida under the forest,interplanting Sesbania cannabina under the forest,organic fertilizer application,residue to woodland,soil testing and formulated fertilization,and applying pure chemical fertilizer(CK)],and the enhancing effects of each treatment on the yield and soil improvement of Eucalyptus plantations were further comprehensively evaluated.The results showed that compared with the control,the five treatments could increase the average stock of Eucalyptus,among which the average stock under the treatment of interplanting T.candida under the forest was the highest,followed by soil testing and formulated fertilization.The soil organic matter content and soil fertility of the forest were significantly improved by interplanting green manure,organic fertilizer application and soil testing and formulated fertilization models,while the short-term(1 a)effect of the residue treatment on the improvement of soil organic matter and soil fertility was insignificant.During the actual production process,interplanting green manure and residue treatment were not effective due to the inoperability,and the applicability were not wide,which still needed further study.Therefore,organic manure application and soil testing and formulated fertilization were suitable choices to promote the improvement of productivity and soil quality of Eucalyptus plantation in Guangxi. 展开更多
关键词 Eucalyptus plantation soil regulation measures Stand volume soil fertility
下载PDF
Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system 被引量:1
2
作者 Nariman MAHMOODI Jens KIESEL +1 位作者 Paul D WAGNER Nicola FOHRER 《Journal of Arid Land》 SCIE CSCD 2020年第4期545-560,共16页
Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u... Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly. 展开更多
关键词 SWAT model stream flow Wadis multi-metric framework water use systems soil and water conservation measures Halilrood Basin
下载PDF
A modified soil water content measurement technique using actively heated fiber optic sensor 被引量:4
3
作者 Meng Wang Xu Li +3 位作者 Lihong Chen Senquan Hou Guiyan Wu Zhilin Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期608-619,共12页
Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.... Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement. 展开更多
关键词 Fiber bragg grating Carbon fiber heated sensor Unsaturated soil Field monitoring soil water content measurement
下载PDF
The Impacts of Supplemental Irrigation Based on Soil Moisture Measurement and Nitrogen Use on Winter Wheat Yield and Nitrogen Absorption and Distribution 被引量:4
4
作者 Xiukuan JIN Maoting MA +1 位作者 Tongke ZHAO Lingling JIANG 《Asian Agricultural Research》 2017年第8期47-54,共8页
Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Su... Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region. 展开更多
关键词 Winter wheat Supplemental irrigation based on soil moisture measurement Nitrogen application amount YIELD Nitrogen absorption and distribution
下载PDF
Study on Soil Improvement Measure of Plant Landscape Construction in Saline and Alkaline Area in Tianjin 被引量:2
5
作者 GENG Meiyun CHEN Yajun HU Haihui YU Lei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期163-168,共6页
A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the s... A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianiin saline and alkaline areas. 展开更多
关键词 saline and alkaline area the view of the plant soil improving measure
下载PDF
An evaluation of soil moisture from AMSR-E over source area of the Yellow River, China 被引量:1
6
作者 TangTang Zhang Mekonnen Gebremichael +3 位作者 Akash Koppa XianHong Meng Qun Du Jun Wen 《Research in Cold and Arid Regions》 CSCD 2019年第6期461-469,共9页
In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration A... In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September. 展开更多
关键词 AMSR-E soil moisture products soil moisture ground measurements source area of the Yellow River AMSR-E soil moisture products applicability
下载PDF
Application of a Soil Nutrient Measuring Instrument in Vegetable Seedling Substrate
7
作者 Wang Pengcheng Zhang Jian +4 位作者 Tian Hongmei Jiang Haikun Wang Yan Wang Mingxia Fang Ling 《Meteorological and Environmental Research》 CAS 2015年第11期39-42,共4页
[Objective] The aim was to find an efficient method to measure available nitrogen, phosphorus and potassium content in vegetable seedling substrate. [ Method] The suitable dosage of leaching agent, ratio of the substr... [Objective] The aim was to find an efficient method to measure available nitrogen, phosphorus and potassium content in vegetable seedling substrate. [ Method] The suitable dosage of leaching agent, ratio of the substrate to water and leaching time for the detection of nutrient contents in the substrate by a soil nutrient measuring instrument were discussed firstly, and then the results of nutrient contents measured by the soil nutrient measuring instrument were compared with that by conventional approaches. [ Result] In compadson with the conventional methods, the av- erage content of available nitrogen measured by the soil nutrient measuring instrument was slightly higher, while the average content of available phosphorus measured by the instrument was lower; the average content of available potassium measured by the instrument was close to that by the conventional method. [ Conclusion] This study could provide us a new method to detect available nitrogen, phosphorus and potassium content in seedling substrate efficiently. 展开更多
关键词 soil nutrient measuring instrument Seedling substrate Available nitrogen Available phosphorus Available potassium Measurement method
下载PDF
Measurement and simulation of evaporation from a bare soil
8
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第4期64-71,共8页
MeasurementandsimulationofevaporationfromabaresoilWangHuixiaoInstituteofGeography,ChineseAcademyofSciences,B... MeasurementandsimulationofevaporationfromabaresoilWangHuixiaoInstituteofGeography,ChineseAcademyofSciences,Beijing100101,Chin... 展开更多
关键词 Measurement and simulation of evaporation from a bare soil
下载PDF
Impacts of water conservancy and soil conservation measures on annual runoff in the Chaohe River Basin during 1961-2005 被引量:9
9
作者 LI Zijun LI Xiubin XU Zhimei 《Journal of Geographical Sciences》 SCIE CSCD 2010年第6期947-960,共14页
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K... Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period. 展开更多
关键词 IMPACTS water conservancy and soil conservation measures annual runoff rainfall-runoff empirical statistical model the Chaohe River Basin
原文传递
Soil erosion assessment by RUSLE with improved P factor and its validation:Case study on mountainous and hilly areas of Hubei Province,China 被引量:7
10
作者 Pei Tian Zhanliang Zhu +6 位作者 Qimeng Yue Yi He Zhaoyi Zhang Fanghua Hao Wenzhao Guo Lin Chen Muxing Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2021年第3期433-444,共12页
The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE r... The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE remain largely unclear,especially for the mountainous and hilly areas.In this study,we improved the RUSLE by considering quantitative impacts of different SWC measures on the P factor value.The improved RUSLE was validated against the long-term(2000-2015)soil erosion monitoring data obtained from 96 runoff plots(15—35°)in mountainous and hilly areas of Hubei Province,China;the result presented a high accuracy with the determination coefficient of 0.89.Based on the erosion monitoring data of 2018 and 2019,the Root Mean Square Error of the result by the improved RUSLE was 28.0%smaller than that by the original RUSLE with decrement of 19.6%—24.0%in the average P factor values,indicating that the soil erosion modelling accuracy was significantly enhanced by the improved RUSLE.Relatively low P factor values appeared for farmlands with tillage measures(P<0.53),grasslands with engineering measures(P<0.23),woodlands with biological measures(P<0.28),and other land use types with biological measures(P<0.51).The soil erosion modulus showed a downward trend with the corresponding values of 1681.21,1673.14,1594.70,1482.40 and 1437.50 t km^(-2)a-1 in 2000,2005,2010,2015 and 2019,respectively.The applicability of the improved RUSLE was verified by the measurements in typical mountainous and hilly areas of Hubei Province,China,and arrangements of SWC measures of this area were proposed. 展开更多
关键词 Conservation practice factor(P) soil and water conservation measure soil erosion Land use Monitoring data
原文传递
Study on a soil erosion sampling survey in the Pan-Third Pole region based on higher-resolution images 被引量:2
11
作者 Qinke Yang Mengyang Zhu +6 位作者 Chunmei Wang Xiaoping Zhang Baoyuan Liu Xin Wei Guowei Pang Chaozhen Du Lihua Yang 《International Soil and Water Conservation Research》 SCIE CSCD 2020年第4期440-451,共12页
Soil erosion is one of the most severe global environmental problems,and soil erosion surveys are the scientific basis for planning soil conservation and ecological development.To improve soil erosion sampling survey ... Soil erosion is one of the most severe global environmental problems,and soil erosion surveys are the scientific basis for planning soil conservation and ecological development.To improve soil erosion sampling survey methods and accurately and rapidly estimate the actual rates of soil erosion,a Pan-Third Pole region was taken as an example to study a methodology of soil erosion sampling survey based on high-spatial-resolution remote sensing images.The sampling units were designed using a stratified variable probability systematic sampling method.The spatiotemporal characteristics of soil erosion and conservation were taken into account,and finer-resolution freely available and accessible images in Google Earth were used.Through the visual interpretation of the free high-resolution remote sensing images,detailed information on land use and soil conservation measures was obtained.Then,combined with the regional soil erosion factor data products,such as rainfall-runoff erosivity factor(R),soil erodibility factor(K),and slope length and steepness factor(LS),the soil loss rates of some sampling units were calculated.The results show that,based on these high-resolution remote sensing images,the land use and soil conservation measures of the sampling units can be quickly and accurately extracted.The interpretation accuracy in 4 typical cross sections was more than 80%,and sampling accuracy,described by histogram similarity in 11 large sampling sites,show that the landuse of sampling uints can represent the structural characteristics of regional land use.Based on the interpretation of data from the sample survey and the regional soil erosion factor data products,the calculation of the soil erosion rate can be completed quickly.The calculation results can reflect the actual conditions of soil erosion better than the potential soil erosion rates calculated by using the coarse-resolution remote sensing method. 展开更多
关键词 Pan-third pole area Land use soil conservation measures Remote sensing Variable probability sampling
原文传递
Continuous measurement method and mathematical model for soil compactness
12
作者 Huihui Zhao Tao Cui +6 位作者 Li Yang Qingyan Hou Weijun Yan Xiantao He Chenlong Fan Jiaqi Dong Dongxing Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第5期196-204,共9页
With the continuous improvement of agricultural mechanization,soil compaction becomes more and more serious.Serious soil compaction has been considered as an important negative factor affecting crop growth and yield.T... With the continuous improvement of agricultural mechanization,soil compaction becomes more and more serious.Serious soil compaction has been considered as an important negative factor affecting crop growth and yield.The measurement of soil compactness is a common method to measure the soil compaction level.In order to solve the problems of discontinuous sampling,time-consuming and poor real-time soil compactness measurement,a real-time measurement method of soil compactness based on fertilizing shovel was proposed,and the mathematical model between fertilizing shovel arm deformation and soil compactness was established.Based on the interaction mechanism between fertilizing shovel and soil,through the force analysis of fertilizing shovel,it was found that the deformation of fertilizing shovel arm was positively correlated with the sum of soil compactness(SSC)within the range of tillage depth.In order to verify the theoretical analysis results and the detection accuracy of strain gauge,the static bench test was carried out.The test results showed that the strain gauge signal for measuring the deformation of the fertilizing shovel arm was significantly correlated with the applied force.The fitting curve of the linear correlation coefficient was 0.999,the maximum detection error was 0.68 kg,and the detecting accuracy was within the tolerance of 0.57%.Through field orthogonal experiments with four working depths and four compaction levels,a mathematical model of the strain gauge signal and the SSC within the range of tillage depth was established.The experiment showed that compared with the other three depths,the linear correlation coefficient at the tillage depth of 5 cm(TD5)was the lowest,and the slope of the fitting curve was obviously different from the other three depths,so the 5 cm data were excluded when modeling.The model between mean signal value and mean SSC within the range of tillage depth was established based on the data of sampling points with tillage depths of 7.5 cm(TD7.5),10 cm(TD10),and 12.5 cm(TD12.5).The linear correlation coefficient(R^(2))of the model between mean signal value and mean SSC which eliminated 5 cm data was 0.980 and the root mean square error(RMSE)was 143.57 kPa.Compared with the linear model before averaging,the R^(2) was improved by 8.65%,and the RMSE was reduced by 52.39%.This system can realize the real-time and continuous measurement of soil compactness and provide data support for follow-up intelligent agricultural operations. 展开更多
关键词 soil compactness measurement fertilizing shovel strain gauge precision agriculture
原文传递
Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou,Chengde,Hebei,North China 被引量:5
13
作者 Houyun Sun Xiaoming Sun +3 位作者 Xiaofeng Wei Xingkai Huang Guoqiu Ke Hao Wei 《Journal of Earth Science》 SCIE CAS CSCD 2023年第3期838-856,共19页
Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in No... Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in North China.The geochemical characteristics and formation mechanism of the Nuanquanzi geothermal system were elucidated by classical hydrogeochemical analysis,multi-isotopes approach(δD,δ^(18)O,δ^(13)C,δ^(87)Sr/^(86)Sr),14CAMSdating,and integrated geophysical prospecting of surface-soil radon gas measurement and CSAMT inversion.The results show that the Nuanquanzi geothermal field is a medium-low temperature convection-fault semi-enclosed geothermal system.The hydrochemical type of thermal water is primarily HCO_(3)-Na,and rich in soluble SiO_(2),F^(-)and Cl^(-).The geothermal water primarily originated from the recharging meteoric water with a maximum circulation depth of 2400-3200 m,but affected by the mixing of endogenous sedimentary water.The reservoir temperature calculated by Na-K and quartz geothermometer of the Nuanquanzi geothermal system was determined to be 73.39-92.87℃.The conduction-cooling and shallow cold-water mixing processes occurred during the parent geothermal fluid ascent to surface,and the proportion of cold-water mixing during circulation was approximately 88.3%to 92.2%.The high-anomaly radon zones matched well to the low apparentresistance areas and hiding faults,indicating that the Nuanquanzi geothermal field was dominated by a graben basin restricted by multiple faults. 展开更多
关键词 geothermal water HYDROGEOCHEMISTRY water isotopes soil radon measurement controlled source audio-frequency magnetotelluric
原文传递
Gully internal erosion triggered by a prolonged heavy rainfall event in the tableland region of China's Loess Plateau 被引量:2
14
作者 Jiaxi Wang Yan Zhang +2 位作者 Kunheng Li Ziqing Zhang Chang Chen 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期610-621,共12页
Gully erosion is a severe form of soil erosion,but gully internal erosion processes are poorly understood,especially at the event scale.To investigate gully internal erosion intensity and understand the related gully ... Gully erosion is a severe form of soil erosion,but gully internal erosion processes are poorly understood,especially at the event scale.To investigate gully internal erosion intensity and understand the related gully development mechanism in an agricultural environment with gully head stabilization and vege-tation restoration efforts,two successive field investigations were carried out just before and after a prolonged rainfall event in 2021 in the tableland region of China's Loess Plateau.Thirteen gullies were investigated and all experienced gully internal erosion,while most gully boundaries were stable during the heavy rainfall event based on the comparison of the UAV digital orthograph maps(DOMs acquired with Unmanned Aerial Vehicle)before and after the rainfall event.The proportion of gully internal erosion area to gully internal area of the 13 investigated gullies ranged from 3 to 55%,with average areal erosion proportion of the gully sidewall and gully bed of 21%and 36%,respectively.The erosion area of subdrainage units(SDUs)on the gully sidewall was positively correlated to the SDU area,average SDU slope gradient and vegetation type,while the erosion area on the gully bed was positively correlated to the gully area,gully depth and gully bed slope gradient.Gully internal erosion was not significantly correlated with gully drainage area because the connectivity between the upslope and gully areas was interrupted and the effective drainage area of the gully was obviously reduced by soil erosion conser-vation measures,including terraces on the upslope drainage area,shrub belts,and water barriers.Thus,gully internal erosion is still active under the heavy rainfall storm against the background of the'Grain for Green'and'Gully Stabilization and Tableland Protection'programs,and integrated measures for preventing both gully expansion and gully internal erosion must be further enhanced in the context of climate change. 展开更多
关键词 Gully erosion Mass movement Heavy storm LOESS soil andwater conservation measures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部