期刊文献+
共找到1,217篇文章
< 1 2 61 >
每页显示 20 50 100
Impact of pH on Microbial Biomass Carbon and Microbial Biomass Phosphorus in Red Soils 被引量:34
1
作者 CHENGuo-Chao HEZhen-Li WANGYi-Jun 《Pedosphere》 SCIE CAS CSCD 2004年第1期9-15,共7页
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly aff... The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions. 展开更多
关键词 PH值 微生物 红土 作物生长
下载PDF
Bentonite-humic acid improves soil organic carbon,microbial biomass,enzyme activities and grain quality in a sandy soil cropped to maize(Zea mays L.) in a semi-arid region 被引量:3
2
作者 ZHOU Lei XU Sheng-tao +4 位作者 Carlos M.MONREAL Neil B.MCLAUGHLIN ZHAO Bao-ping LIU Jing-hui HAO Guo-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第1期208-221,共14页
A bentonite-humic acid(B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effec... A bentonite-humic acid(B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effect on soil physicochemical and biological properties, and grain quality is largely unknown. The effect of B-HA, added at 30 Mg ha^(-1), was studied at 1,3, 5 and 7 years after its addition to a degraded sandy soil in a semi-arid region of China. The addition of B-HA significantly increased water-filled pore space and soil organic carbon, especially at 3 to 5 years after its soil addition to the soil. Amending the sandy soil with B-HA also increased the content of microbial biomass(MB)-carbon,-nitrogen and-phosphorus, and the activities of urease, invertase, catalase and alkaline phosphatase. The significant effect of maize(Zea mays L.) growth stage on soil MB and enzyme activities accounted for 58 and 84% of their total variation, respectively. In comparison, B-HA accounted for 8% of the total variability for each of the same two variables. B-HA significantly enhanced soil properties and the uptake of N and P by maize in semi-arid areas. The use of B-HA product would be an effective management strategy to reclaim degraded sandy soils and foster sustainable agriculture production in northeast China and regions of the world with similar soils and climate. 展开更多
关键词 bentonite-humic acid soil organic carbon microbial biomass enzyme activity grain quality sandy soil
下载PDF
Microbial Biomass Carbon and Total Organic Carbon of Soils as Affected by Rubber Cultivation 被引量:35
3
作者 ZHANG Hua and ZHANG Gan-LinInstitute of Soil Science, the Chinese Academy of Sciences, P. O. Box 821, Nanjing 210008 《Pedosphere》 SCIE CAS CSCD 2003年第4期353-357,共5页
Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the... Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showed that in the tropical rubber farm,soil microbial biomass C (MBC) and total organic C (TOC) were relatively low in the content but highly correlated with each other. After rubber tapping, soil MBC of mature rubber fields decreased significantly,by 55.5%, compared with immature rubber fields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOC decreased significantly. The decreasing trend of MBC stopped at about ten years of rubber cultivation. After this period, soil MBC increased relatively while soil TOC still kept in decreasing. Soil MBC changes could be measured to predict the tendency of soil organic matter changes due to management practices in a tropical rubber farm several years before the changes in soil TOC become detectable. 展开更多
关键词 微生物 细菌 橡胶 土壤标本
下载PDF
Accumulation of residual soil microbial carbon in Chinese fir plantation soils after nitrogen and phosphorus additions 被引量:2
4
作者 Zhiqiang Ma Xinyu Zhang +6 位作者 Chuang Zhang Huimin Wang Fusheng Chen Xiaoli Fu Xiangmin Fang Xiaomin Sun Qiuliang Lei 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期948-957,共10页
Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not bee... Nitrogen (N) and phosphorus (P) additions can affect soil microbial carbon (C) accumulation. However, the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not been well-defined for Chinese fir plantations in subtropical China. We set up six different treatments, viz. a control (CK), two N treatments (NI: 50kgha-1 a-1; N2: 100 kg ha-1 a-1), one P treatment (P: 50 kg ha-1 a-1), and two combined N and P treatments (NIP: 50kgha-1a-1 of N +50kgha-1a-1 of P; N2P:100 kg ha-1 a-1 of N + 50 kg ha-1 a-1 of P). We then investigated the influences of N and P additions on residual microbial C. The results showed that soil pH and microbial biomass decreased after N additions, while microbial biomass increased after P additions. Soil organic carbon (SOC) and residual microbial C contents increased in the N and P treatments but not in the control. Residual microbial C accumulation varied according to treatment and declined in the order: N2P 〉 N1P 〉 N2 〉 N1 〉 P 〉 CK. Residual microbial C contents were positively correlated with available N, P, and SOC contents, but were negatively correlated with soil pH. The ratio of residual fungal C to residual bacterial C increased under P additions, but declined under combined N1P additions. The ratio of residual microbial C to SOC increased from 11 to 14% under the N1P and N2P treatments, respectively. Our results suggest that the concentrations of residual microbial C and the stability of SOC would increase under combined applications of N and P fertilizers in subtropical Chinese fir plantation soils. 展开更多
关键词 Amino sugar Chinese fir plantation N and Padditions Residual microbial carbon soil environmentvariable
下载PDF
Seasonal variation in soil microbial biomass carbon and nitrogen in an artificial sand-binding vegetation area in Shapotou, northern China 被引量:2
5
作者 YuYan Zhou XuanMing Zhang +2 位作者 XiaoHong Jia JinQin Ma YanHong Gao 《Research in Cold and Arid Regions》 CSCD 2013年第6期733-738,共6页
In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time pe... In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility. 展开更多
关键词 re-vegetation area soil microbial biomass carbon soil microbial biomass nitrogen
下载PDF
Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China 被引量:16
6
作者 FANG Xiangmin WANG Qingli +4 位作者 ZHOU Wangming ZHAO Wei WEI Yawei NIU Lijun DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第3期297-306,共10页
Land use changes are known to alter soil organic carbon(SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microb... Land use changes are known to alter soil organic carbon(SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Mountains of Northeast China is meager. Soil carbon content, microbial biomass carbon(MBC), basal respiration and soil carbon mineralization were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest(NF); spruce plantation(SP) established following clear-cutting of NF; cropland(CL); ginseng farmland(GF) previously under NF; and a five-year Mongolian oak young forest(YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicating low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineralized carbon and potentially mineralized carbon(C0) in NF were significantly higher than those in CL and GF, while no significant difference was observed between NF and SP. In addition, YF had higher values of C0 and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land(CL and GF) uses and plantation may lead to a reduction in soil nutrients(SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area. 展开更多
关键词 土壤有机碳 土地利用变化 微生物量碳 长白山 东北 中国 土地利用类型 微生物特性
下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:5
7
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
下载PDF
Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems 被引量:1
8
作者 Maruf Kajogbola Adebayo Adeboye Abdullahi Bala +3 位作者 Akim Oserhien Osunde Anthony Ozoemenam Uzoma Ayo Joshua Odofin Baba Abubakar Lawal 《Agricultural Sciences》 2011年第1期34-40,共7页
Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivati... Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils. 展开更多
关键词 AGROECOSYSTEMS microbial BIOMASS soil Organic carbon soil Total Nitrogen TROPICAL
下载PDF
Effects of Carbon and Nitrogen Additions on Soil Microbial Biomass Carbon and Enzyme Activities Under Rice Straw Returning 被引量:1
9
作者 Dai Jian-jun Liu Li-zhi +4 位作者 Wang Xiao-chun Fang Qiu-na Cheng Ye-ru Wang Dan-ni Peng Xian-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第3期21-30,共10页
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur... The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities. 展开更多
关键词 rice straw returning carbon and nitrogen sources microbial biomass carbon dissolved organic carbon soil enzyme activity
下载PDF
Linkage of microbial living communities and residues to soil organic carbon accumulation along a forest restoration gradient in southern China
10
作者 Shuo Zhang Qi Deng +8 位作者 Ying-Ping Wang Ji Chen Mengxiao Yu Xi Fang Hongbo He Jinlei Chen Pingping Xu Shenhua Wang Junhua Yan 《Forest Ecosystems》 SCIE CSCD 2021年第4期765-777,共13页
Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large unce... Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers. 展开更多
关键词 soil carbon stock microbial biomass microbial residues Forest restoration soil clay content soil layer
下载PDF
Role of Biochar Amendment on Soil Carbon Mineralization and Microbial Biomass
11
作者 Yimin Wang Ming Li 《Journal of Geoscience and Environment Protection》 2018年第11期173-180,共8页
To understand the influence of biochar properties (pyrolysis temperature and types) on soil physicochemical properties, we investigated the changes of soil organic carbon mineralization, nutrient contents and microbia... To understand the influence of biochar properties (pyrolysis temperature and types) on soil physicochemical properties, we investigated the changes of soil organic carbon mineralization, nutrient contents and microbial biomass after 135 d incubation. Results showed that both corn straw (CB) and rice straw (RB) derived biochars increase the mineralization of organic carbon and nitrogen in the soil, and these biochars pyrolysised at 500?C (CB500, RB500) significantly enhanced the mineralization of soil organic nitrogen. In comparison with control treatment, the application of biochar significantly increased the contents of soil organic carbon, available P and K in soil. Moreover, the activity of soil microbe was enhanced with biochar amendment. Among all treatments, RB500 significantly increased the content of soil microbial biomass carbon (379 ± 9 mg?kg?1) in soil. Our results suggested that the application of biochars to soil improve soil quality, while the biochar type and pyrolysis temperature should be taken into consideration before its application in agro-ecosystem. 展开更多
关键词 BIOCHAR soil soil carbon MINERALIZATION microbial BIOMASS
下载PDF
Influence of Salt Content on Soil Microbial Biomass Carbon
12
作者 Huanqiang ZHENG Fanzhu QU +1 位作者 Kun RONG Xueping LI 《Asian Agricultural Research》 2016年第9期85-89,共5页
Soil salinization has become a global issue. Saline and alkaline arable land was taken as research object in this paper and four salt gradients were set(S1: 0.1%; S2:0. 5%; S3:0.9%; S4:1.3%). Through the addition of d... Soil salinization has become a global issue. Saline and alkaline arable land was taken as research object in this paper and four salt gradients were set(S1: 0.1%; S2:0. 5%; S3:0.9%; S4:1.3%). Through the addition of different substrates( CK: no addition of substrate; N: addition of nitrogen source; C: addition of glucose,C + N: addition of glucose and nitrogen source) to soil,it analyzed the influence of salt content on the soil microbial biomass carbon( SMBC) for the purpose of surveying the response mechanism of soil carbon turnover to salt stress. Results indicated that after addition of different substrates,the SMBC in high salt content(S3 and S4) is obviously lower than that in low salt content( S1 and S2). The decline rate of S3 and S4 is 5. 4% and 14. 2% for no addition of substrate; the decline rate is 9.0% and 24.0% for addition of nitrogen source; the decline rate is 11.5% and 28.0% for addition of carbon source; the decline rate is 19.5% and 39.5% for addition of carbon source + nitrogen source. Compared with no addition of substrates,addition of nitrogen source could not increase the SMBC. Addition of carbon source and carbon + nitrogen can significantly increase the SMBC,and the increase in low salt content soil( 80.0%- 81.0% and 58.0%- 59.0%) is obviously higher than high salt content soil( 52.0%- 69.0%and 34.0%- 50.0%). Generally,when the soil salt content is low( 0.5%),the influence of different substrate treatment is little on the SMBC,and increasing the soil salt content can obviously reduce the SMBC. 展开更多
关键词 soil microbial biomass carbon Yellow River Delta soil salt Substrate addition
下载PDF
Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
13
作者 ShengYun Chen MingHui Wu +1 位作者 Yu Zhang Kai Xue 《Research in Cold and Arid Regions》 CSCD 2021年第3期268-270,共3页
The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and st... The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and stores massive soil carbon. 展开更多
关键词 PERMAFROST QTP Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation
下载PDF
Effects of Different Land Cover Types on Soil Microbial Biomass Carbon and Nitrogen in the Lower Reaches of Niyang River
14
作者 Heping MA Wenyin ZHAO 《Asian Agricultural Research》 2022年第1期41-45,共5页
[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the ... [Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the rational use and sustainable management of land resources in this area.[Methods]Taking the 3 types of land cover(cultivated land,grass land and forest land)in the lower reaches of Niyang River in Tibet as the research object,the contents,distribution characteristics and relationships of soil organic carbon,organic nitrogen,microbial biomass carbon,microbial biomass nitrogen and readily oxidizable organic carbon,and their relationships were studied in 0-10,10-20,20-40,40-60,and 60-100 cm soil depth.[Results]The soil organic carbon content of forest land was higher than that of grass land and cultivated land;the vertical change trend of soil organic carbon content decreased with the increase of depth(P<0.05),and it was mainly concentrated in the soil with a depth of 0-20 cm.The soil organic carbon content was significantly different among forest land,grass land and cultivated land(P<0.05),but there was no significant difference between cultivated land and grass land(P>0.05).The soil organic nitrogen content was significantly different among cultivated land,grass land,and forest land(P<0.05),but there was no significant difference between grass land and forest land(P>0.05).The readily oxidizable organic carbon,microbial biomass carbon and nitrogen in forest land were higher than that in cultivated land and grass land.The change trend of soil readily oxidizable organic carbon,microbial biomass carbon and microbial biomass nitrogen was similar to the change of soil organic carbon content,showing a significant positive correlation.In addition to being subject to land cover,soil microbial biomass carbon and nitrogen content were also subject to the interaction of factors such as soil temperature,humidity,pH and vegetation types.[Conclusions]Changes in land cover significantly affect soil organic carbon and nitrogen,readily oxidizable organic carbon,microbial biomass carbon and nitrogen content. 展开更多
关键词 soil microbial biomass carbon and nitrogen Land cover soil depths Canonical correspondence analysis(CCA)
下载PDF
Forest management causes soil carbon loss by reducing particulate organic carbon in Guangxi, Southern China 被引量:1
15
作者 Xiaojie Li Qiufang Zhang +2 位作者 Jiguang Feng Demeng Jiang Biao Zhu 《Forest Ecosystems》 SCIE CSCD 2023年第1期73-81,共9页
Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to ... Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to forest management practices remains unclear.Methods: We sampled 0–10 cm mineral soil from three different management plantations and one protected forest in Guangxi, Southern China, to explore how forest management practices affect SOC through changing mineralassociated C(MAOC) and particulate organic C(POC), as well as fungal and bacterial necromass C.Results: Compared with the protected forest, SOC and POC in the abandoned, mixed and Eucalyptus plantations significantly decreased, but MAOC showed no significant change, indicating that the loss of SOC was mainly from decreased POC under forest management. Forest management also significantly reduced root biomass, soil extractable organic C, MNC, and total microbial biomass(measured by phospholipid fatty acid), but increased fungi-to-bacteria ratio(F:B) and soil peroxidase activity. Moreover, POC was positively correlated with root biomass, total microbial biomass and MNC, and negatively with F:B and peroxidase activity. These results suggested that root input and microbial properties together regulated soil POC dynamics during forest management.Conclusion: Overall, this study indicates that forest management intervention significantly decreases SOC by reducing POC in Guangxi, Southern China, and suggests that forest protection can help to sequester more soil C in forest ecosystems. 展开更多
关键词 soil organic carbon Forest management Mineral-associated organic carbon Particulate organic carbon microbial necromass carbon
下载PDF
Soil microbial biomass and its controls 被引量:21
16
作者 ZHANG Jiang-shan GUO Jian-fen +1 位作者 CHEN Guang-shui QIAN Wei 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第4期327-330,共4页
Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter in... Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter into the soil, and a temporary sink for nutrients. This review describes several factors controlling the dynamics of soil microbial biomass. These factors mainly include organic carbon and nitrogen limitation, residue and nutrient management, differences in plant species, soil texture, soil moisture and temperature. On the basis of detailed analysis, it is reasonable that future research would be focused on the impact of land use change on soil MB in tropical and subtropical ecosystems. 展开更多
关键词 microbial biomass soil Influencing factors Organic carbon Organic nutrient REVIEW
下载PDF
Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils 被引量:7
17
作者 YUAN Hong-zhao ZHU Zhen-ke +8 位作者 WEI Xiao-meng LIU Shou-long PENG Pei-qin Anna Gunina SHEN Jian-lin Yakov Kuzyakov GE Ti-da WU Jin-shui WANG Jiu-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第7期1474-1485,共12页
The application of straw and biochar is widely practiced for the improvement of soil fertility.However,its impact on microbial functional profiles,particularly with regard to paddy soils,is not well understood.The aim... The application of straw and biochar is widely practiced for the improvement of soil fertility.However,its impact on microbial functional profiles,particularly with regard to paddy soils,is not well understood.The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop(i.e.,tillering and blooming).We applied the community level physiological profiling approach,with 15 substrates(sugars,carboxylic and amino acids,and phenolic acid).In general,straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots.Biochar amendment promoted the use of α-ketoglutaric acid,the mineralization of which was higher than that of any other substrate.Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils.Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization.Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances,such as amino acids.Thus,our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage. 展开更多
关键词 carbon metabolism microbial functional diversity BIOCHAR amendment PADDY soil MicroRespTM
下载PDF
Changes in Transformation of Soil Organic C and Functional Diversity of Soil Microbial Community Under Different Land Uses 被引量:22
18
作者 LI Zhong-pei WU Xiao-chen CHEN Bi-yun 《Agricultural Sciences in China》 CAS CSCD 2007年第10期1235-1245,共11页
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water... Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality. 展开更多
关键词 land use patterns transformation of soil organic carbon functional diversity of soil microbial community
下载PDF
Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest 被引量:7
19
作者 Serdar Akburak Yowhan Son +1 位作者 Ender Makineci Meric Cakir 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期683-692,共10页
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low... Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences. 展开更多
关键词 C/N Exchangeable cations microbial biomass carbon qCO_2 soil pH
下载PDF
Effects of continuous nitrogen addition on microbial properties and soil organic matter in a Larix gmelinii plantation in China 被引量:5
20
作者 Kai Yang Jiaojun Zhu +3 位作者 Jiacun Gu Shuang Xu Lizhong Yu Zhengquan Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期85-92,共8页
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest... Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability. 展开更多
关键词 Enzyme activity Larch plantation microbial biomass Nitrogen addition soil carbon accumulation soil organic matter fractions
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部