Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on...Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.展开更多
Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the ...Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha,Guizhou Province.The yield and market value of FCT at Fenggang were much lower than those at Jinsha.However,the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied,which might be due to a higher N supply capacity at the Fenggang site.At later stages of growth(7-16 weeks after transplanting),the soil net N mineralization at Fenggang(56 kg N ha^(-1))was almost double that at Jinsha(30 kg N ha^(-1)).While soil NH_4-N and NO_3-N were almost exhausted by the plants or leached 5 weeks after transplanting,the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization,which contributed to a high nicotine content in the upper leaves.The order of soil N contribution to N buildup in different leaves was:upper leaves>middle leaves>lower leaves.Thus,soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves.展开更多
Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. A...Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).展开更多
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of...The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system.展开更多
Afforestation effectively improved soil microbial communities and significantly increased soil nitro-gen mineralization rate(Rm).Soil microorganisms drive Rm by regulating soil N-cycling genes.Soil nitrification genes...Afforestation effectively improved soil microbial communities and significantly increased soil nitro-gen mineralization rate(Rm).Soil microorganisms drive Rm by regulating soil N-cycling genes.Soil nitrification genes had a major effect on soil Rm than denitrification genes after afforestation.Assessing the function of forest ecosystems requires an understanding of the mechanism of soil nitrogen mineralization.However,it remains unclear how soil N-cycling genes drive soil nitrogen mineralization during afforestation.In this study,we collected soil samples from a chrono-sequence of 14,20,30,and 45 years of Robinia pseudoacacia L.(RP14,RP20,RP30,and RP45)with a sloped farmland(FL)as a control.Through metagenomic sequencing analysis,we found significant changes in the diversity and composition of soil microbial communities involved in N-cycling along the afforestation time series,with afforestation effectively increasing the diversity(both alpha and beta diversity)of soil microbial communities.We conducted indoor culture experiments and analyzed correlations,which revealed a significant increase in both soil nitrification rate(Rn)and soil nitrogen mineralization rate(Rm)with increasing stand age.Furthermore,we found a strong correlation between soil Rm and soil microbial diversity(both alpha and beta diversity)and with the abundance of soil N-cycling genes.Partial least squares path modeling(PLS-PM)analysis showed that nitrification genes(narH,narY,nxrB,narG,narZ,nxrA,hao,pmoC-amoC)and denitrification genes(norB,nosZ,nirK)had a greater direct effect on soil Rm compared to their effect on soil microbial communities.Our results reveal the relationships between soil nitrogen mineralization rate and soil microbial communities and between the mineralization rate and functional genes involved in N-cycling,in the context of Robinia pseudoacacia L.restoration on the Loess Plateau.This study enriches the understanding of the effects of microorganisms on soil nitrogen mineralization rate during afforestation and provides a new theoretical basis for evaluating soil nitrogen mineralization mechanisms during forest succession.展开更多
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
Background:Invasive species affect community dynamics and ecosystem functions,but the mechanisms of their impacts are poorly understood.Hypotheses on invasion impact range from Superior Competitor to Novel Function,fr...Background:Invasive species affect community dynamics and ecosystem functions,but the mechanisms of their impacts are poorly understood.Hypotheses on invasion impact range from Superior Competitor to Novel Function,from Enemy Escape to Microbial Mediation.In this study,we examined the effects of an urban tree invader,Acer platanoides(Norway maple,NM),on a mesic deciduous forest in contrast to its native congener Acer rubrum(red maple,RM)with a split-plot design experiment.A total of 720 maple seedlings were transplanted to 72 plots under 24 trees of three canopy types.The three experimental treatments were removal of resource competition at above-and belowground and removal of leaf-litter effect.Soil moisture and nitrogen-related microbial activities were followed for each plot.Results:We found that partial canopy removal increased canopy openness and light transmission to the forest floor,but to a greater extent under NM than under RM trees.NM seedlings were more shade tolerant than RM seedlings in height growth.During the reciprocal transplantation in the mixed forest,biomass accumulation of NM seedlings under RM trees were twice as much as under NM,while that of RM seedlings under NM trees was 23.5%less than under RM.Soil net nitrification and relative nitrification were significantly higher,but mineralization rate was much lower under NM than under RM trees,which would lead to faster N leaching and lower N availability in the soil.Plots with litter removal had significantly higher seedling mortality due to herbivory by the end of 2 years,especially for NM seedlings under NM trees.Trenching enhanced soil water availability but there was no difference among canopy types.Conclusions:Our results demonstrated that invasion of NM not only altered forest canopy structure but also changed herbivory rate for seedlings and N dynamics in the soils.NM seedlings were more shade tolerant under NM canopies than RM seedlings and were more protected by NM litter under NM canopies than under RM canopies.These altered biotic and abiotic environments will likely facilitate further invasion of NM in the forests,hence positive feedbacks,and make it an increasingly serious tree invader in North America.展开更多
Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases wh...Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world.展开更多
Overuse of fertilizers and the resultant pollution and eutrophication of surface and groundwater is a growing issue in China. Consequently, improved management strategies are needed to optimize crop production with re...Overuse of fertilizers and the resultant pollution and eutrophication of surface and groundwater is a growing issue in China. Consequently, improved management strategies are needed to optimize crop production with reduced nutrient inputs. Conventional fertilization (CF), reduced fertilization (RF), and reduced fertilization with maize (Zea mays L.) as a summer catch crop (RF+C) treatments were evaluated in 2008 and 2009 by quantifying tomato (Lycopersieon esculentum) fruit yield and soil nutrient balance in a greenhouse tomato double-cropping system. Fertilizer nitrogen (N) application was reduced by 37% in the RF and RF+C treatments compared to the CF treatment with no significant reduction in fruit yield. Mean soil mineral N (Nmin) content to a depth of 180 cm following tomato and maize harvest was lower in the RF and RF+C treatments than in the CF treatment. Residual soil Nmin content was reduced by 21% and 55% in the RF and RF+C treatments, respectively, compared to the CF treatment. Surplus phosphorus (P) and potassium (K) contents in the RFWC treatment were significantly lower than those in the RF treatment, mainly due to additional P and K uptake by the catch crop. We concluded that for intensive greenhouse production systems, the RF and RF+C treatments could maintain tomato fruit yield, reduce the potential for nitrate (NO3^--N) leaching, and with a catch crop, provide additional benefits through increased biomass production.展开更多
基金funded by the National Natural Science Foundation of China (31270500, 31240002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05 050602)+1 种基金the Open Research Fund of the Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciencesthe support of the Duolun Restoration Ecology Research Station, which is part of the Institute of Botany, Chinese Academy of Sciences, for providing access to the sampling site
文摘Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.
基金the Program for Changjiang Scholars and Innovation Research Team in University(No.IRT0511)
文摘Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha,Guizhou Province.The yield and market value of FCT at Fenggang were much lower than those at Jinsha.However,the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied,which might be due to a higher N supply capacity at the Fenggang site.At later stages of growth(7-16 weeks after transplanting),the soil net N mineralization at Fenggang(56 kg N ha^(-1))was almost double that at Jinsha(30 kg N ha^(-1)).While soil NH_4-N and NO_3-N were almost exhausted by the plants or leached 5 weeks after transplanting,the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization,which contributed to a high nicotine content in the upper leaves.The order of soil N contribution to N buildup in different leaves was:upper leaves>middle leaves>lower leaves.Thus,soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves.
基金Project (No. G1999011809) supported by the National Key Basic Research Support Foundation (NKBRSF) of China.
文摘Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).
基金supported by the Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD14B16-04)the Science and Technology Development Program of Guangdong,China(2012A020100003 and 2015B090903077)
文摘The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system.
基金supported by the National Natural Science Foundation of China(No.41907031)the China Postdoctoral Science Foundation(No.2021T140565)the China Postdoctoral Science Foundation(No.2019M650276).
文摘Afforestation effectively improved soil microbial communities and significantly increased soil nitro-gen mineralization rate(Rm).Soil microorganisms drive Rm by regulating soil N-cycling genes.Soil nitrification genes had a major effect on soil Rm than denitrification genes after afforestation.Assessing the function of forest ecosystems requires an understanding of the mechanism of soil nitrogen mineralization.However,it remains unclear how soil N-cycling genes drive soil nitrogen mineralization during afforestation.In this study,we collected soil samples from a chrono-sequence of 14,20,30,and 45 years of Robinia pseudoacacia L.(RP14,RP20,RP30,and RP45)with a sloped farmland(FL)as a control.Through metagenomic sequencing analysis,we found significant changes in the diversity and composition of soil microbial communities involved in N-cycling along the afforestation time series,with afforestation effectively increasing the diversity(both alpha and beta diversity)of soil microbial communities.We conducted indoor culture experiments and analyzed correlations,which revealed a significant increase in both soil nitrification rate(Rn)and soil nitrogen mineralization rate(Rm)with increasing stand age.Furthermore,we found a strong correlation between soil Rm and soil microbial diversity(both alpha and beta diversity)and with the abundance of soil N-cycling genes.Partial least squares path modeling(PLS-PM)analysis showed that nitrification genes(narH,narY,nxrB,narG,narZ,nxrA,hao,pmoC-amoC)and denitrification genes(norB,nosZ,nirK)had a greater direct effect on soil Rm compared to their effect on soil microbial communities.Our results reveal the relationships between soil nitrogen mineralization rate and soil microbial communities and between the mineralization rate and functional genes involved in N-cycling,in the context of Robinia pseudoacacia L.restoration on the Loess Plateau.This study enriches the understanding of the effects of microorganisms on soil nitrogen mineralization rate during afforestation and provides a new theoretical basis for evaluating soil nitrogen mineralization mechanisms during forest succession.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.
基金WF received funding for the field study from Sigma Xi,Association of Women in Sciences and International Society of ArboricultureWF is currently supported by NSF 18-600 Program(ID:1921773)National Natural Science Foundation of China Major International Joint Research Project(ID:81620108010).
文摘Background:Invasive species affect community dynamics and ecosystem functions,but the mechanisms of their impacts are poorly understood.Hypotheses on invasion impact range from Superior Competitor to Novel Function,from Enemy Escape to Microbial Mediation.In this study,we examined the effects of an urban tree invader,Acer platanoides(Norway maple,NM),on a mesic deciduous forest in contrast to its native congener Acer rubrum(red maple,RM)with a split-plot design experiment.A total of 720 maple seedlings were transplanted to 72 plots under 24 trees of three canopy types.The three experimental treatments were removal of resource competition at above-and belowground and removal of leaf-litter effect.Soil moisture and nitrogen-related microbial activities were followed for each plot.Results:We found that partial canopy removal increased canopy openness and light transmission to the forest floor,but to a greater extent under NM than under RM trees.NM seedlings were more shade tolerant than RM seedlings in height growth.During the reciprocal transplantation in the mixed forest,biomass accumulation of NM seedlings under RM trees were twice as much as under NM,while that of RM seedlings under NM trees was 23.5%less than under RM.Soil net nitrification and relative nitrification were significantly higher,but mineralization rate was much lower under NM than under RM trees,which would lead to faster N leaching and lower N availability in the soil.Plots with litter removal had significantly higher seedling mortality due to herbivory by the end of 2 years,especially for NM seedlings under NM trees.Trenching enhanced soil water availability but there was no difference among canopy types.Conclusions:Our results demonstrated that invasion of NM not only altered forest canopy structure but also changed herbivory rate for seedlings and N dynamics in the soils.NM seedlings were more shade tolerant under NM canopies than RM seedlings and were more protected by NM litter under NM canopies than under RM canopies.These altered biotic and abiotic environments will likely facilitate further invasion of NM in the forests,hence positive feedbacks,and make it an increasingly serious tree invader in North America.
基金supported by the Beijing Higher Education Young Elite Teacher Project (No. YETP0313)the Chinese Universities Scientific Fund (No. 2014JD073)+1 种基金the National Natural Science Foundation of China (Nos. 31330070, 30925024, 31121062, 41173083, and 41473068)the Introducing International Advanced Agricultural Science and Technology Program of the Ministry of Agriculture of China (948 Program) (No. 2011-G18)
文摘Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world.
基金financially supported by the National Natural Science Foundation of China (Nos. 31071858 and 41173083)
文摘Overuse of fertilizers and the resultant pollution and eutrophication of surface and groundwater is a growing issue in China. Consequently, improved management strategies are needed to optimize crop production with reduced nutrient inputs. Conventional fertilization (CF), reduced fertilization (RF), and reduced fertilization with maize (Zea mays L.) as a summer catch crop (RF+C) treatments were evaluated in 2008 and 2009 by quantifying tomato (Lycopersieon esculentum) fruit yield and soil nutrient balance in a greenhouse tomato double-cropping system. Fertilizer nitrogen (N) application was reduced by 37% in the RF and RF+C treatments compared to the CF treatment with no significant reduction in fruit yield. Mean soil mineral N (Nmin) content to a depth of 180 cm following tomato and maize harvest was lower in the RF and RF+C treatments than in the CF treatment. Residual soil Nmin content was reduced by 21% and 55% in the RF and RF+C treatments, respectively, compared to the CF treatment. Surplus phosphorus (P) and potassium (K) contents in the RFWC treatment were significantly lower than those in the RF treatment, mainly due to additional P and K uptake by the catch crop. We concluded that for intensive greenhouse production systems, the RF and RF+C treatments could maintain tomato fruit yield, reduce the potential for nitrate (NO3^--N) leaching, and with a catch crop, provide additional benefits through increased biomass production.