The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, ...The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, and Pb using the in surface samples of five soil great groups differing in their physicochemical properties. For determining heavy metal adsorption and desorption capacities of soil samples, six different concentrations (0, 2.5, 5, 10, 15 and 20 mg Lt) were used in a laboratory experiment with tree replications. An analytical procedure involving sequential chemical extractions has been used for partitioning of heavy metals into five fractions. Sorption isotherms were characterized using linear, Frendlich and Langmuir equations. The results indicated that the selective sequences of the metal adsorption based on the distribution coefficient was Pb〉Cu〉Ni〉Cd〉Zn〉Mn〉Fe and Pb, Cu, and Ni are the most strongly sorbed metals by these soils, whereas Cd, Zn and Mn are the least sorbed ones. The total adsorbed amount of these metals on the studied soils was well described by Langmuir equation. Calciorthid had the highset Pb, Cu, Ni, Cd, Zn, Mn, and Fe adsorption, and the sequences followed order Fluvaquent〉Argiustoll〉Pellustert〉Haplustept of the studied soil.展开更多
Under the framework of Chinese Soil Taxonomy, all the 14 established soil orders including Histosols, Anthrosols, Spodosols, Andisols, Ferralisols, Vertisols, Aridisols, Halosols, Gleyosols, Isohumisols, Ferrisols, Lu...Under the framework of Chinese Soil Taxonomy, all the 14 established soil orders including Histosols, Anthrosols, Spodosols, Andisols, Ferralisols, Vertisols, Aridisols, Halosols, Gleyosols, Isohumisols, Ferrisols, Luvisols, Cambisols and Primosols, forming a complicated pedodiversity pattern resulted from both various natural conditions and long history of human activities, are introduced with brief descriptions. At the end of the paper, the selected references in English are listed for foreign readers to get further information in detail if needed.展开更多
Human disturbances to soils can lead to dramatic changes in soil physical,chemical,and biological properties.The influence of agricultural activities on the bacterial community over different orders of soil and at dep...Human disturbances to soils can lead to dramatic changes in soil physical,chemical,and biological properties.The influence of agricultural activities on the bacterial community over different orders of soil and at depth is still not well understood.We used the concept of genoform and phenoform to investigate the vertical(down to 1 m depth)soil bacterial community structure in paired genosoils(undisturbed forests)and phenosoils(cultivated vineyards)in different soil orders.The study was conducted in the Hunter Valley area,New South Wales,Australia,where samples were collected from 3 different soil orders(Calcarosol,Chromosol,and Kurosol),and each soil order consists of a pair of genosoil and phenosoil.The bacterial community structure was analyzed using highthroughput sequencing of 16S rRNA.Results showed that bacterial-diversity decreased with depth in phenosoils,however,the trend is less obvious in genoform profiles.Topsoil diversity was greater in phenosoils than genosoils,but the trend was reversed in subsoils.Thus,cropping not only affected topsoil bacteria community but also decreased its diversity in the subsoil.Bacterial community in topsoils was influenced by both soil orders and soil forms,however,in subsoils it was more impacted by soil orders.Constrained Analysis of Principal Coordinates revealed that cropping increased the similarity of bacterial structures of different soil orders.This study highlighted the strong influence of agricultural activities on soil microbial distribution with depth,which is controlled by soil order.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh...The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.展开更多
The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences...The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil ordersi.e.entisol, inceptisol and alfisol. Bt cotton (cvNCS-138) and its non-transgenic isoline (cvNCS-138) were grown until maturity. A no crop pot was maintained with three replications for all the three soil orders. Study design was a factorial experiment under a completely randomized block design with three replications. The study concludes that soil under Bt cotton cultivar produced significantly higher amount of phosphatase activity than both nonBt and no crop treatments at three growth stages. And the value decreased as the crop growth period advanced. The interaction effect between soil type and Bt-crop was found to be significant in different growth stages throughout the growing season. Results from the study revealed that a significant reduction (9.4%) of the dehydrogenase activity and soil respiration (5%) in the rhizosphere of Bt cotton over non-Bt isoline.展开更多
Heavy metals can stimulate the activity of soil enzymes in smaller amounts, but act as inhibitors if present in high concentrations. Natural and anthropogenic heavy metal contamination and its disturbances on soils ca...Heavy metals can stimulate the activity of soil enzymes in smaller amounts, but act as inhibitors if present in high concentrations. Natural and anthropogenic heavy metal contamination and its disturbances on soils can be evaluated by using enzymatic activities as sensors. To study the effects of Cd, soil added with known Cd concentrations (0, 10, 20, 50,100 and 200 mg/kg soil) were incubated for a period of 30 days at 28℃. At intervals of 0, 5, 10, 20 and 30 days samples were withdrawn for enzyme assays like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidise (PER). In a separate experiment the effect of Cd on active microbial biomass carbon (AMBC), basal soil respiration (BSR), and metabolic quotient were studied. AMBC showed a reduction trend with increase in Cd concentration, and a maximum reduction of 47% was observed at 30th day for 200 mg/kg treatment. BSR also has got the same trend, with a maximum decrease of 42% at the 30th day. With the rate of Cd amendments and treatment period, DHA has shown an inhibition trend;whereas maximum decrease was observed for 200 mg/kg treatment at 30th day. CAT, PER, and PHE were found to be increased with Cd addition and remained at higher levels than in the control soil. These changes can be attributed to the effect of Cd on microbial activities. Based on cluster analysis, AMBC appears to be the sensitive indicators for the soil exposed to Cd contamination.展开更多
It is presented the results of a long-term and intensive experiment, which models the processes of primary soil formation under controlled agro-ecosystems. The influence of mineral substrate transformation is analyzed...It is presented the results of a long-term and intensive experiment, which models the processes of primary soil formation under controlled agro-ecosystems. The influence of mineral substrate transformation is analyzed on the content of chemical elements in plants tomato, and wheat. For the first time have been established dynamic synergistic and antagonistic interrelations between the chemical elements in a various bodies of the plant (roots, reproductive bodies, stems, and leaves). Using methods of the theory of information was revealed dynamics of collective state of chemical elements in the plants. It is shown that the collective states of the chemical elements which defined by the information function is strictly differentiated for different plant bodies, and have hierarchic order. We analyzed the following chemical elements Si, Al, Fe, Mg, Ca, K, P, S, Cl, Na, Mn, Zn.展开更多
The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit be...The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.展开更多
There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater porti...There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater portion of uncultivable microorganisms. Due to difficulties to select the optimum DNA extraction method in view of downstream molecular analyses, this article presents a straightforward mathematical framework for comparing some of the most commonly used methods. Four commercial DNA extraction kits and two physical-chemical methods (bead-beating and freeze-thaw) were compared for the extraction of DNA under several quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A260/230 ratios), degradation degree of DNA, easiness of PCR amplification, duration of extraction, and cost per extraction. From a practical point of view, it is unlikely that a single DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to compare the methods. The PowerSoil? DNA Isolation Kit was systematically defined as the best performing method for extracting DNA from soil samples. More specifically, for soil:manure and soil:manure:biochar mixtures, the PowerSoil?DNA Isolation Kit method performed best, while for neat soil samples its alternative version gained the first rank.展开更多
文摘The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, and Pb using the in surface samples of five soil great groups differing in their physicochemical properties. For determining heavy metal adsorption and desorption capacities of soil samples, six different concentrations (0, 2.5, 5, 10, 15 and 20 mg Lt) were used in a laboratory experiment with tree replications. An analytical procedure involving sequential chemical extractions has been used for partitioning of heavy metals into five fractions. Sorption isotherms were characterized using linear, Frendlich and Langmuir equations. The results indicated that the selective sequences of the metal adsorption based on the distribution coefficient was Pb〉Cu〉Ni〉Cd〉Zn〉Mn〉Fe and Pb, Cu, and Ni are the most strongly sorbed metals by these soils, whereas Cd, Zn and Mn are the least sorbed ones. The total adsorbed amount of these metals on the studied soils was well described by Langmuir equation. Calciorthid had the highset Pb, Cu, Ni, Cd, Zn, Mn, and Fe adsorption, and the sequences followed order Fluvaquent〉Argiustoll〉Pellustert〉Haplustept of the studied soil.
基金National Natural Science Foundation of China,No.40171044
文摘Under the framework of Chinese Soil Taxonomy, all the 14 established soil orders including Histosols, Anthrosols, Spodosols, Andisols, Ferralisols, Vertisols, Aridisols, Halosols, Gleyosols, Isohumisols, Ferrisols, Luvisols, Cambisols and Primosols, forming a complicated pedodiversity pattern resulted from both various natural conditions and long history of human activities, are introduced with brief descriptions. At the end of the paper, the selected references in English are listed for foreign readers to get further information in detail if needed.
基金This work was supported by the ARC Discovery project DP190103005 Synergising pedodiversity and soil biodiversity to secure soil functionality。
文摘Human disturbances to soils can lead to dramatic changes in soil physical,chemical,and biological properties.The influence of agricultural activities on the bacterial community over different orders of soil and at depth is still not well understood.We used the concept of genoform and phenoform to investigate the vertical(down to 1 m depth)soil bacterial community structure in paired genosoils(undisturbed forests)and phenosoils(cultivated vineyards)in different soil orders.The study was conducted in the Hunter Valley area,New South Wales,Australia,where samples were collected from 3 different soil orders(Calcarosol,Chromosol,and Kurosol),and each soil order consists of a pair of genosoil and phenosoil.The bacterial community structure was analyzed using highthroughput sequencing of 16S rRNA.Results showed that bacterial-diversity decreased with depth in phenosoils,however,the trend is less obvious in genoform profiles.Topsoil diversity was greater in phenosoils than genosoils,but the trend was reversed in subsoils.Thus,cropping not only affected topsoil bacteria community but also decreased its diversity in the subsoil.Bacterial community in topsoils was influenced by both soil orders and soil forms,however,in subsoils it was more impacted by soil orders.Constrained Analysis of Principal Coordinates revealed that cropping increased the similarity of bacterial structures of different soil orders.This study highlighted the strong influence of agricultural activities on soil microbial distribution with depth,which is controlled by soil order.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012810)the Fundamental Research Funds for the Central Universities(Grant No.2009B15114)
文摘The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.
文摘The enzymatic activity was evaluated under both Bt and non-Bt systems in varied soil type. The study was conducted during the 2010 wet season (July to December) in a net-house at the Institute of Agricultural Sciences of Banaras Hindu University. It was carried out on three different soil ordersi.e.entisol, inceptisol and alfisol. Bt cotton (cvNCS-138) and its non-transgenic isoline (cvNCS-138) were grown until maturity. A no crop pot was maintained with three replications for all the three soil orders. Study design was a factorial experiment under a completely randomized block design with three replications. The study concludes that soil under Bt cotton cultivar produced significantly higher amount of phosphatase activity than both nonBt and no crop treatments at three growth stages. And the value decreased as the crop growth period advanced. The interaction effect between soil type and Bt-crop was found to be significant in different growth stages throughout the growing season. Results from the study revealed that a significant reduction (9.4%) of the dehydrogenase activity and soil respiration (5%) in the rhizosphere of Bt cotton over non-Bt isoline.
文摘Heavy metals can stimulate the activity of soil enzymes in smaller amounts, but act as inhibitors if present in high concentrations. Natural and anthropogenic heavy metal contamination and its disturbances on soils can be evaluated by using enzymatic activities as sensors. To study the effects of Cd, soil added with known Cd concentrations (0, 10, 20, 50,100 and 200 mg/kg soil) were incubated for a period of 30 days at 28℃. At intervals of 0, 5, 10, 20 and 30 days samples were withdrawn for enzyme assays like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidise (PER). In a separate experiment the effect of Cd on active microbial biomass carbon (AMBC), basal soil respiration (BSR), and metabolic quotient were studied. AMBC showed a reduction trend with increase in Cd concentration, and a maximum reduction of 47% was observed at 30th day for 200 mg/kg treatment. BSR also has got the same trend, with a maximum decrease of 42% at the 30th day. With the rate of Cd amendments and treatment period, DHA has shown an inhibition trend;whereas maximum decrease was observed for 200 mg/kg treatment at 30th day. CAT, PER, and PHE were found to be increased with Cd addition and remained at higher levels than in the control soil. These changes can be attributed to the effect of Cd on microbial activities. Based on cluster analysis, AMBC appears to be the sensitive indicators for the soil exposed to Cd contamination.
文摘It is presented the results of a long-term and intensive experiment, which models the processes of primary soil formation under controlled agro-ecosystems. The influence of mineral substrate transformation is analyzed on the content of chemical elements in plants tomato, and wheat. For the first time have been established dynamic synergistic and antagonistic interrelations between the chemical elements in a various bodies of the plant (roots, reproductive bodies, stems, and leaves). Using methods of the theory of information was revealed dynamics of collective state of chemical elements in the plants. It is shown that the collective states of the chemical elements which defined by the information function is strictly differentiated for different plant bodies, and have hierarchic order. We analyzed the following chemical elements Si, Al, Fe, Mg, Ca, K, P, S, Cl, Na, Mn, Zn.
文摘The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.
文摘There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater portion of uncultivable microorganisms. Due to difficulties to select the optimum DNA extraction method in view of downstream molecular analyses, this article presents a straightforward mathematical framework for comparing some of the most commonly used methods. Four commercial DNA extraction kits and two physical-chemical methods (bead-beating and freeze-thaw) were compared for the extraction of DNA under several quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A260/230 ratios), degradation degree of DNA, easiness of PCR amplification, duration of extraction, and cost per extraction. From a practical point of view, it is unlikely that a single DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to compare the methods. The PowerSoil? DNA Isolation Kit was systematically defined as the best performing method for extracting DNA from soil samples. More specifically, for soil:manure and soil:manure:biochar mixtures, the PowerSoil?DNA Isolation Kit method performed best, while for neat soil samples its alternative version gained the first rank.