期刊文献+
共找到13,438篇文章
< 1 2 250 >
每页显示 20 50 100
Natural forests exhibit higher organic carbon concentrations and recalcitrant carbon proportions in soil than plantations:a global data synthesis
1
作者 Xiuqing Nie Hui Wang +1 位作者 Jian Wang Shirong Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期131-141,共11页
Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC c... Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands. 展开更多
关键词 Global data synthesis Natural forest Plantations soil organic carbon soil organic carbon chemical composition
下载PDF
The changes in soil organic carbon stock and quality across a subalpine forest successional series
2
作者 Fei Li Zhihui Wang +3 位作者 Jianfeng Hou Xuqing Li Dan Wang Wanqin Yang 《Forest Ecosystems》 SCIE CSCD 2024年第4期423-433,共11页
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes... Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge. 展开更多
关键词 Forest successional series soil organic cubon stock Molecular composition Humification indices soil organic carbon quality
下载PDF
Climate and Soil Geochemistry Influence the Soil Organic Carbon Content in Drylands of the Songliao Plain,Northeast China
3
作者 LIU Kai DAI Huimin +2 位作者 SONG Yunhong LIANG Shuai YANG Zhongfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1394-1403,共10页
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ... The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change. 展开更多
关键词 soil organic carbon climate change soil geochemistry Northeast China
下载PDF
Improving model performance in mapping cropland soil organic matter using time-series remote sensing data
4
作者 Xianglin Zhang Jie Xue +5 位作者 Songchao Chen Zhiqing Zhuo Zheng Wang Xueyao Chen Yi Xiao Zhou Shi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2820-2841,共22页
Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effect... Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effective management policies.As a spatial information prediction technique,digital soil mapping(DSM)has been widely used to spatially map soil information at different scales.However,the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance.To overcome this limitation,this study systematically assessed a framework of“information extractionfeature selection-model averaging”for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou,China in 2021.The results showed that using the framework of dynamic information extraction,feature selection and model averaging could efficiently improve the accuracy of the final predictions(R^(2):0.48 to 0.53)without having obviously negative impacts on uncertainty.Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM,which improved the R^(2)of random forest from 0.44 to 0.48 and the R^(2)of extreme gradient boosting from 0.37to 0.43.Forward recursive feature selection(FRFS)is recommended when there are relatively few environmental covariates(<200),whereas Boruta is recommended when there are many environmental covariates(>500).The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty.When the structures of initial prediction models are similar,increasing in the number of averaging models did not have significantly positive effects on the final predictions.Given the advantages of these selected strategies over information extraction,feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales,so this approach can provide more reliable references for soil conservation policy-making. 展开更多
关键词 CROPLAND soil organic matter digital soil mapping machine learning feature selection model averaging
下载PDF
Retention of harvest residues promotes the accumulation of topsoil organic carbon by increasing particulate organic carbon in a Chinese fir plantation
5
作者 Jiamin Yang Ke Huang +5 位作者 Xin Guan Weidong Zhang Renshan Li Longchi Chen Silong Wang Qingpeng Yang 《Forest Ecosystems》 SCIE CSCD 2024年第5期720-727,共8页
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled... Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management. 展开更多
关键词 Chinese fir plantation soil organic carbon Particulate organic carbon Mineral-associated organic carbon Harvest residue management
下载PDF
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
6
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
7
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
8
作者 Shanshan Cai Lei Sun +7 位作者 Wei Wang Yan Li Jianli Ding Liang Jin Yumei Li Jiuming Zhang Jingkuan Wang Dan Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1703-1717,共15页
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st... Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland. 展开更多
关键词 dissolved organic matter black soil surface runoff AGGREGATES fluorescence spectrum
下载PDF
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
9
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest soil organic matter fractions EARTHWORM MILLIPEDES Litter decomposition
下载PDF
Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales
10
作者 Jie Song Dongsheng Yu +4 位作者 Siwei Wang Yanhe Zhao Xin Wang Lixia Ma Jiangang Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1393-1408,共16页
Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred... Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images. 展开更多
关键词 soil organic matter Sentinel-2 monthly synthetic images machine learning model spatial prediction
下载PDF
N-fixing tree species promote the chemical stability of soil organic carbon in subtropical plantations through increasing the relative contribution of plant-derived lipids
11
作者 Xiaodan Ye Junwei Luan +3 位作者 Hui Wang Yu Zhang Yi Wang Shirong Liu 《Forest Ecosystems》 SCIE CSCD 2024年第5期758-769,共12页
Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi... Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations. 展开更多
关键词 Tree species diversity soil organic carbon N-fixing tree species Hydrolysable plant lipids Lignin phenols
下载PDF
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
12
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER soil organic carbon Temporal variation Vegetation aboveground biomass Yellow River source region
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
13
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture soil organic Carbon Carbon Fractions Rice-Wheat System organic Amendments
下载PDF
Effects of Biochar and Soil Organic Matter Levels on Physicochemical Properties of Mollisol and Soybean's Biomass
14
作者 Zhang Shuaikun Xu Zhiyuan +4 位作者 Shi Fangfang Yang Jing Luo Xu Jiang Zhenfeng Liu Zhihua 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第3期33-41,共9页
Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics aft... Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics after adding to the soil.However,the mechanism remains unclear for the relation between the soil organic matter level and biochar amount.So,the soil physical and chemical properties and soybean growth in a two-year pot experiment were detected at three levels of soil organic matter and three biochar additions(0,1%and 10%).The difference was found in two biochar application rates.The 1%biochar addition had no positive effect on the soil chemical properties based the two-year experiment.However,10%biochar application significantly increased the soil water content(8.0%-39.7%),the total porosity(9.7%-21.3%),pH(0.26-0.84 unit),organic matter content(89.0%-261.2%),and the available potassium content(29.0%-109.1%).The biomass of soybean increased by 19.4%-78.1%after biochar addition,yet,the soil bulk density reduced at the range of 12.6%-26.0%by 10%biochar addition.Only the 100-grain weight was correlated to the interaction of biochar and the native soil organic matter.All the indicators showed that the interaction between biochar and soil organic matter level was weak in mollisol.The effects of biochar on the physical-chemical properties relied on its amount.When biochar is applied to the soil,the amount of biochar should be considered rather than the native soil organic matter level. 展开更多
关键词 BIOCHAR soil organic matter bulk density available nutrient
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
15
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes soil N soil organic C Green Manure Deer Browse Forage Cropping Systems
下载PDF
Optimization of Diesel and Crude Oil Degradation in a Ghanaian Soil Using Organic Wastes as Amendment
16
作者 Adama Sawadogo Innocent Yao Dotse Lawson +2 位作者 Hama Cissé Cheikna Zongo Aly Savadogo 《Journal of Agricultural Chemistry and Environment》 2024年第1期1-12,共12页
Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimul... Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study. 展开更多
关键词 BIODEGRADATION BIOSTIMULATION soil DIESEL Crude Oil organic Amendment Ghana
下载PDF
National Soil Organic Carbon Stocks Inventories under Different Mangrove Forest Types in Gabon
17
作者 Rolf Gaël Mabicka Obame Neil-Yohan Musadji +5 位作者 Jean Hervé Mve Beh Lydie-Stella Koutika Jean Aubin Ondo Farrel Nzigou Boucka Michel Mbina Mounguengui Claude Geffroy 《Open Journal of Forestry》 2024年第2期127-140,共14页
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear... Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data. 展开更多
关键词 Mangroves Forest soil organic Carbon Stocks Rizophora Racemose Avicenia germinans GABON
下载PDF
Variations in Soil Organic Matter Content in Cultivated and Uncultivated Calcareous Soils from the Mediterranean Island of Malta after 15 Years of Cultivation
18
作者 Anthony T. Sacco Marcelle Agius Clara Didier 《Open Journal of Soil Science》 2024年第4期210-226,共17页
The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variatio... The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variation in soil OM after 15 years of cultivation, and determine whether soil series, soil depth, and cultivation influence variation. OM was determined in the topsoil and subsoil of 7 agricultural and 4 non-agricultural sites. The sites represented 7 different soil series that are present on the island. In sampling periods 1 (t = 0 years) and 2 (t =15 years), the OM content in the collective (all soil series) bulk (topsoil and subsoil) uncultivated soil was 3.9 % and 3.8 % respectively. This was significantly greater than that of the collective bulk cultivated soil (2.4% and 2.3%). The OM in the collective uncultivated topsoil was 5.4% and 5.2% in periods 1 and 2 and was significantly higher than that of the cultivated topsoil (2.5% in both periods). The OM content in the collective uncultivated subsoil was 2.3% and 2.5% in periods 1 and 2 respectively but only that measured in period 2 was significantly higher than that of the cultivated subsoil (2.2% in both periods). On an individual soil series basis, the OM in the uncultivated topsoils was significantly higher than that of their cultivated counterparts. The differences in the subsoils were not significant. Across the uncultivated soil series, OM was significantly higher in the topsoil than in the subsoil but in the cultivated soil series the differences between topsoil and subsoil were not significant. There was no significant difference in OM between the uncultivated soils of different series, but in the cultivated the OM content was higher in soils that were more mature. After 15 years, no significant change in OM occurred in both the collective cultivated and uncultivated bulk soils, the collective topsoil and subsoil, and in most of the individual series. The OM content of each soil series was also similar to what was reported 60 and 50 years earlier by other researchers. 展开更多
关键词 soil organic Carbon Agricultural Land Non-Agricultural Land Land Management
下载PDF
Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions 被引量:1
19
作者 Tingcheng Zhao Aibin He +3 位作者 Mohammad Nauman Khan Qi Yin Shaokun Song Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期93-107,共15页
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u... Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection. 展开更多
关键词 colored rice organic fertilizer soil quality grain yield ANTHOCYANIN
下载PDF
Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests 被引量:2
20
作者 Ewa Błońska Wojciech Prazuch Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2023年第3期316-327,共12页
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no... The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence. 展开更多
关键词 Enzyme activity Forest soils Heavy fraction Light fraction soil organic matter
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部