期刊文献+
共找到480篇文章
< 1 2 24 >
每页显示 20 50 100
Soil Organic Carbon Stock and Soil Quality under Four Major Agroecosystems in the Eastern Flank of Mount Bambouto (West-Cameroon)
1
作者 Ade Linda Wijungbwen Cedrick Nguemezi +1 位作者 Duchel Ivilin Voulemo Djeuhala Paul Tematio 《Journal of Geoscience and Environment Protection》 2023年第9期40-53,共14页
Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil... Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil quality SQ in the main agroecosystems (AES) of the eastern flank of Mount Bambouto (West, Cameroon). Using multiple statistics tests and principal component analysis (PCA), SOCS and Soil Quality Index (SQI) were computed for each AES. SOCS and SQI were computed based on soil chemical properties and analysis of variance. Topsoil samples (0 - 30 cm) were collected in a different AES and analyzed in the laboratory. The four AES identified and selected are cultivated land (CL), forest areas (FA), mixed areas (MA), and bush areas (BA). Further, multiple comparison tests were used to compare soils from different AES. PCA was used to select the most appropriate indicators that control SOCS and SQ. Several soil properties showed high to very high coefficient of variation within the AES. Organic matter (OM) was significantly high in FA. SOCS and SQ differ significantly (p = 0.000) between the AES. The study further indicates that the main variables controlling SQ within the eastern flank of Mount Bambouto are OM, pHw, N, C/N, and CEC. While the main soil parameters controlling SOCS are OM, OC, BD, C/N, S, and pHKCl. 展开更多
关键词 soil organic carbon Stock soil Quality AGROECOSYSTEMS Principal Component Analysis Mount Bambouto
下载PDF
Effects of Land Cover on Soil Organic Carbon Stock in a Karst Landscape with Discontinuous Soil Distribution 被引量:15
2
作者 CHEN Xiang-bi ZHENG Hua +5 位作者 ZHANG Wei HE Xun-yang LI Lei WU Jin-shui HUANG Dao-you SU Yi-rong 《Journal of Mountain Science》 SCIE CSCD 2014年第3期774-781,共8页
Land cover type is critical for soil organic carbon (SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distri... Land cover type is critical for soil organic carbon (SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages (cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0-20 cm and 20-50 cm soil layers increased significantly. SOC density (SOCD) within O-lOO cm soil depth ranged from 1.45 to 8.72 kg m^-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on 8OC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration. 展开更多
关键词 soil organic carbon (SOC) Karst area Discontinuous soil distribution Land cover type carbon sequestration potential
下载PDF
Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain,Northeast China 被引量:15
3
作者 XI Min LU Xian-guo +1 位作者 LI Yue KONG Fan-long 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1074-1078,共5页
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu... Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain. 展开更多
关键词 dissolved organic carbon (DOC) distribution characteristics annular wetland soil-water solutions Sanjiang Plain
下载PDF
Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols 被引量:8
4
作者 SUI Yueyu JIAO Xiaoguang +3 位作者 CHEN Wenting LIU Xiaobing ZHANG Xingyi DING Guangwei 《Chinese Geographical Science》 SCIE CSCD 2013年第6期692-699,共8页
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribu... Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China. 展开更多
关键词 erosion depth black soil farmland soil labile organic carbon distribution pattern long-term fertilization
下载PDF
Soil Organic Carbon and Nutrients along an Alpine Grassland Transect across Northern Tibet 被引量:9
5
作者 CAO Ying-zi WANG Xiao-dan +2 位作者 LU Xu-yang YAN Yan FAN Ji-hui 《Journal of Mountain Science》 SCIE CSCD 2013年第4期564-573,共10页
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical... Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks. 展开更多
关键词 soil organic carbon Total nitrogen Total phosphorus Particle size distribution Alpinegrassland TIBET
下载PDF
Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau 被引量:3
6
作者 LIU Shu-li DU Yan-gong +5 位作者 ZHANG Fa-wei LIN Li LI Yi-kang GUO Xiao-wei LI Qian CAO Guang-min 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1806-1817,共12页
Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon(SOC) storage in grassland among pre... Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon(SOC) storage in grassland among previous studies, and the study on soil inorganic carbon(SIC) is still lack. We surveyed 153 sites during plant peak growing season and estimated SOC and SIC for temperate desert, temperate steppe, alpine steppe, steppe meadow, alpine meadow and swamp, which covered main grassland in the Qinghai Plateau during 2011 to 2012. The results showed that the vertical and spatial distributions of SOC and SIC varied by grassland types. The SOC amount mainly decreased from southeast to northwest, whereas the SIC amount increased from southeast to northwest. The magnitude of SOC amount in the top 50 cm across grassland types ranked by: swamp > alpine meadow >steppe meadow > temperate steppe > alpine steppe > temperate desert, while the SIC amount showed an opposite order. There was a great deal of variation in proportion of SOC and SIC among different grassland types(from 55.17 to 94.59 for SOC and 5.14 to 44.83 for SIC). The total SOC and SIC storage was 5.78 Pg and 1.37 Pg, respectively, in the top 50 cm of soil in Qinghai Province. The mixed linear model revealed that grassland types was the predominant factor in spatial variations of SOC amount while grassland types and soil p H accounted for those of SIC amount. Our results suggested that the community shift of alpine meadow towards alpine grassland induced by climate warming would decrease carbon sequestration capacity by 6.0 kg C m2. 展开更多
关键词 soil organic carbon soil inorganic carbon Different grassland types carbon distribution STORAGE
下载PDF
Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province,China 被引量:5
7
作者 SUN Tao TONG Wen-jie +5 位作者 CHANG Nai-jie DENG Ai-xing LIN Zhong-long FENG Xing-bing LI Jun-ying SONG Zhen-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第5期1475-1487,共13页
Soil organic carbon(SOC)is the most important indicators of soil quality and health.Identifying the spatial distribution of SOC and its influencing factors in cropland is crucial to understand the terrestrial carbon c... Soil organic carbon(SOC)is the most important indicators of soil quality and health.Identifying the spatial distribution of SOC and its influencing factors in cropland is crucial to understand the terrestrial carbon cycle and optimize agronomic management.Yunnan Province,characterized by mountainous topography and varied elevation,is one of the highest SOC regions in China.Yet its SOC stock of cropland and influencing factors has not been fully studied due to the lack of adequate soil investigation.In this study,the digital mapping of SOC at 1 km resolution and the estimation of total SOC stock in cropland of Yunnan Province was undertaken using 8637 topsoil(0-20 cm)samples and a series of spatial data through Random Forest(RF)model.It was showed that across the cropland of Yunnan Province,the mean SOC density and total stock were 4.84 kg m^(-2) and 337.5 Mt,respectively.The spatial distribution indicated that relatively high SOC density regions resided in the northwest and northeast parts of Yunnan Province.Elevation(19.5%),temperature(17.3%),rainfall(14.5%),and Topographic wetness index(9.9%)were the most important factors which controlled spatial variability of SOC density.Agronomic practices(e.g.,crop straw treatments,fertilizer management)should be optimized for the sustainable development of crop production with high SOC sequestration capacity in Yunnan Province. 展开更多
关键词 cultivated land soil organic carbon spatial distribution driving factors Random Forest
下载PDF
Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol 被引量:6
8
作者 Batande Sinovuyo NDZELU DOU Sen ZHANG Xiaowei 《Journal of Arid Land》 SCIE CSCD 2020年第6期1018-1030,共13页
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA... Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production. 展开更多
关键词 aggregate-size distribution corn straw return corn yield labile soil organic carbon fractions Haplic Cambisol
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
9
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
Depth Distribution Pattern of Soil Organic Carbon in Forest from Taowan Basin of Funiu Mountain Area
10
作者 Xifeng NING Lina SONG Yaowu TIAN 《Asian Agricultural Research》 2019年第6期20-24,共5页
[Objectives]By testing applicability of SOC depth distribution model in geographical and climatic conditions of Funiu Mountain area,SOC depth distribution model in the region was established and applied. The construct... [Objectives]By testing applicability of SOC depth distribution model in geographical and climatic conditions of Funiu Mountain area,SOC depth distribution model in the region was established and applied. The constructed model was used to estimate SOC mass density in other regions,thereby obtaining SOC abundance distribution chart at different depths.[Methods]165 soil sampling sites were selected from Quercus variabilis forest,Pinus tabulaeformis forest,mixed forest,and shrub forest in Taowan basin of Funiu Mountain area,to determine SOC content at different depths,study SOC depth distribution pattern of forest in Taowan basin of Funiu Mountain area,and assess SOC reserve at different depths.[Results]Average SOC density of Q. variabilis forest,P. tabulaeformis forest,mixed forest,and shrub forest at the depth of 0-20 cm was 7. 92,8. 42,8. 14 and 9. 67 kg/m^2,and there was significant difference in SOC density between shrub forest and Q. variabilis forest,P. tabulaeformis forest,mixed forest( P < 0. 05),and SOC density of four kinds of vegetation all abruptly declined with soil depth increased. At the depth of 0-20 cm,correlation between SOC density and vegetation type,canopy density,clay content and sand content was significant,and the correlation with altitude was insignificant. When carbon density at the depth of 0-100 cm was used to describe regional SOC reserve,the estimated value was lower. The established space model could predict SOC density of forest.[Conclusions]The estimation of deep-layer SOC by the established model needed further consideration,and estimation method for special areas needed to be further demonstrated. 展开更多
关键词 Funiu MOUNTAIN Area Taowan BASIN FOREST soil organic carbon DEPTH distribution
下载PDF
The Changing Characteristics of Profile Distribution of Organic Nitrogen Components in Apple-pear Orchard Soil
11
作者 Huan LIU Qian GAO +4 位作者 Shiyuan LIU Jie LI Yu WANG Jicheng HAN Yong GUO 《Agricultural Biotechnology》 CAS 2021年第4期130-133,共4页
In order to evaluate the effects of soil depth on the contents of soil organic nitrogen,organic nitrogen forms in apple-pear orchard soil profile were quantified using the method proposed by Bremner in 1965.The result... In order to evaluate the effects of soil depth on the contents of soil organic nitrogen,organic nitrogen forms in apple-pear orchard soil profile were quantified using the method proposed by Bremner in 1965.The results indicated that in addition to the amino sugar-N,all the soil organic N components within the same soil layer in wasteland were more than those in apple-pear orchard soil;with the layer depth increasing,the contents of different organic nitrogen forms in apple-pear orchard soil and wasteland were decreased;and the proportion of each organic N component within total hydrolysable N was different,and the percentages of ammonia N and amino acid-N components within total hydrolysable N were higher,especially the percentage of ammonia N components within total hydrolysable N was the highest. 展开更多
关键词 organic nitrogen components PROFILE Apple-pear orchard soil distribution characteristics
下载PDF
Conventional tillage improves the storage of soil organic carbon in heavy fractions in the Loess Plateau, China 被引量:1
12
作者 HAN Huige LI Xudong +5 位作者 NIU Decao Sharon J HALL GUO Ding WAN Changgui Jennifer K LEARNED FU Hua 《Journal of Arid Land》 SCIE CSCD 2015年第5期636-643,共8页
Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long... Soil labile organic carbon (C) plays an important role in improving soil quality. The relatively stable fractions of soil organic C (SOC) represent the bulk of SOC, and are also the primary determinant of the long-term C balance of terrestrial ecosystems. Different land use types can influence the distribution patterns of different SOC fractions. However, the underlying mechanisms are not well understood. In the present study, different fractions of SOC were determined in two land use types: a grazed grassland (established on previously cultivated cropland 25 years ago, GG) and a long-term cultivated millet cropland (MC). The results showed that C concentration and C storage of light fractions (LF) and heavy fractions (HF) presented different patterns along the soil profiles in the two sites. More plant residues in GG resulted in 91.9% higher LF storage at the 0-10 cm soil depth, further contributed to 21.9% higher SOC storage at this soil depth; SOC storage at 20-60 cm soil depth in MC was 98.8% higher than that in GG, which could be mainly attributed to the HF storage 104.5% higher than in GG. This might be caused by the long-term application of organic manure, as well as the protection from plough pan and silt- and clay-sized particles. The study indicated that different soil management practices in this region can greatly influence the variations of different SOC fractions, while the conventional tillage can greatly improve the storage of SOC by in- creasing heavy fractions. 展开更多
关键词 land use soil organic carbon heavy fraction organic carbon light fraction organic carbon particle size distribution
下载PDF
Profile Distribution of Soil Properties on Sloping Cropland in Yingwugou Small Watershed of the Dan River Basin
13
作者 Guoce XU Zhanbin LI +2 位作者 Peng LI Tiegang ZHANG Haidong GAO 《Asian Agricultural Research》 2013年第10期111-116,共6页
Based on 3 m×3 m grid in sloping cornfield with soil auger in Yingwugou Small Watershed of the Dan River Basin,a total of 39sampling points were collected,and soil water content and nutrient content were measured... Based on 3 m×3 m grid in sloping cornfield with soil auger in Yingwugou Small Watershed of the Dan River Basin,a total of 39sampling points were collected,and soil water content and nutrient content were measured in different soil depths.Meanwhile,the soil properties of different depth have been analyzed by traditional statistical and geo-statistics approaches.The results showed:the mean value of total nitrogen and soil organic carbon reduced as soil depth increased in general.But soil water content increased as the soil depth increased.The change of total phosphorus with soil depth was not obvious.The total nitrogen,soil water content,soil organic carbon and total phosphorus presented a moderate intensity variation and strong spatial dependence.In the four sampling depths,semi-variance model can simulate spatial structure of total nitrogen,soil water content and total phosphorus in 0 to 10 cm and 10 to 20 cm well.But the spatial structure of soil organic carbon was not good,which could not be simulated with semi-variance model.The analysis with Kriging interpolation showed that,the total nitrogen,soil water content and total phosphorus presented layered distribution in 0 to 10 cm and 10 to 20 cm;when the spatial distribution changed to 10 to 20cm from 0 to 10 cm,the average total nitrogen content reduced to from 0.598 g/kg 0.310 g/kg,while the average soil water content and total phosphorus increased from 12.988%to 15.439%and from 0.229 g/kg to 0.366 g/kg,respectively. 展开更多
关键词 Sloping CROPLand TN TP soil organic carbon Profile
下载PDF
Relationships among Glomalin Related Soil Protein,Soc and Soil Texture under Different Land Use Types 被引量:7
14
作者 祝飞 赵庆辉 +4 位作者 邓万刚 陈明智 Qing-hui Wan-gang Ming-zhi 《Agricultural Science & Technology》 CAS 2010年第5期82-86,共5页
[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected la... [Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay. 展开更多
关键词 Glomalin Hainan soil organic carbon soil texture
下载PDF
The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land 被引量:2
15
作者 YongZhong Su TingNa Liu JunQia Kong 《Research in Cold and Arid Regions》 CSCD 2019年第2期116-125,共10页
Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shel... Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shelter belt used to control desertification in the desert-oasis ecotone in northwestern China. In this study, we collected soil samples in an age sequence of 0-, 2-, 5-, 13-, 16-, 31-, and 39-year-old H. ammodendron plantations to assess the effects of the shrub on soil fertility and salinity. Results show that SOC and total N concentrations increased significantly with increasing plantation age and increased 5.95-(in the interspaces) to 9.05-fold(under the canopy) and 6.15-to 8.46-fold at the 0-5 cm depth at the 39-year-old plantation compared with non-vegetated sandy land. Simultaneously, H. ammodendron establishment and development resulted in significant salt accumulation in the surface layer. On average, total soil salt content at the 0-5 cm and 5-20 cm depth increased 16.8-fold and 4.4-fold, respectively, compared with non-vegetated sandy land. The increase of total salt derived mostly from the accumulation of SO_4^(2-), Ca^(2+) and Na^+ with H. ammodendron development. The accumulation in salinity was more significant than the increase in fertility, suggesting that improved soil fertility did not limit the impact of salinization. The adverse effect of salt accumulation may result in H. ammodendron plantation degradation and impact community stability in the long run. 展开更多
关键词 HALOXYLON ammodendron soil salt and its component soil organic carbon plantation CHRONOSEQUENCE SandY land in desert-oasis ECOTONE
下载PDF
苏州生态景观林土壤有机碳储量及活性组分的垂直分布特征 被引量:1
16
作者 姚新华 唐建 +5 位作者 毕雷雷 唐盛兰 夏秀丽 顾海波 袁在翔 关庆伟 《安徽农业大学学报》 CAS CSCD 2024年第2期312-318,共7页
为探究生态景观林类型对土壤有机碳(SOC)固持的影响,选择苏州市香樟人工林(Cinnamomum camphora plantation)、喜树人工林(Camptotheca acuminata plantation)、水杉人工林(Metasequoia glyptostroboides plantation)、栾树人工林(Koelr... 为探究生态景观林类型对土壤有机碳(SOC)固持的影响,选择苏州市香樟人工林(Cinnamomum camphora plantation)、喜树人工林(Camptotheca acuminata plantation)、水杉人工林(Metasequoia glyptostroboides plantation)、栾树人工林(Koelreuteria paniculata plantation)和池杉人工林(Taxodium distichum var.imbricatum plantation)5种生态景观林为研究对象,测定分析了各林分的0~20 cm、20~40 cm、40~60 cm和60~80 cm、80~100 cm 5个土壤层次有机碳、可溶性有机碳(DOC)、微生物生物量碳(MBC)以及易氧化有机碳(EOC)的含量与储量。结果表明:(1)各土层有机碳含量及储量分别在3.34~18.91 g·kg^(-1)和12.98~66.99 t·hm^(-2)之间,并且在不同林分之间差异显著,尤其是表层土壤有机碳;并且,香樟和喜树人工林0~100 cm土壤有机碳储量要显著高于其余3种林分。(2)不同生态景观林土壤可溶性有机碳、微生物生物量碳和易氧化有机碳差异显著,且具有明显的表聚效应;在不同林分之间,栾树和水杉人工林0~100 cm土壤可溶性有机碳与微生物生物量碳的储量最高,喜树和香樟人工林0~100 cm土壤易氧化有机碳储量最高。(3)试验地土壤有机碳及其活性组分主要与全氮、全磷极显著正相关,与容重极显著负相关。生态景观林类型显著影响0~100 cm土壤有机碳及活性组分的含量和储量;相较于水杉、栾树和池杉人工林,香樟和喜树人工林更有利于试验区土壤有机碳固持。 展开更多
关键词 土壤有机碳 活性有机碳 生态景观林 土壤层次 垂直分布
下载PDF
接种蚯蚓对有机茶园土壤结构及有机碳库的影响
17
作者 张香凝 史福刚 +2 位作者 李太魁 郭战玲 寇长林 《生态学报》 CAS CSCD 北大核心 2024年第4期1747-1754,共8页
为探讨接种蚯蚓对有机茶园土壤团聚体、孔隙分布及有机碳库的影响,设置375条/m^(2),250条/m^(2),125条/m^(2)三种蚯蚓投放密度,将威廉腔环蚓接种于信阳有机茶园土壤中。结果表明:接种蚯蚓能显著提升>2mm大团聚体的比例而降低<0.2... 为探讨接种蚯蚓对有机茶园土壤团聚体、孔隙分布及有机碳库的影响,设置375条/m^(2),250条/m^(2),125条/m^(2)三种蚯蚓投放密度,将威廉腔环蚓接种于信阳有机茶园土壤中。结果表明:接种蚯蚓能显著提升>2mm大团聚体的比例而降低<0.25mm粒径的微团聚体的比例;提高水稳性小团聚体(0.25mm≤d≤2mm)比例,但对水稳性大团聚体d>2mm的影响不显著;高密度蚯蚓处理平均重量直径(MWD),平均几何直径(NWD)以及分型维数(D),团聚体破坏率(PAD)显著高于其他密度处理及对照(CK)。接种蚯蚓使得结构性孔隙(土壤颗粒间和团聚体间孔隙)所占比重增加,其中以团聚体间孔隙增加最为显著,其次为颗粒间孔隙,对由粘粒及矿物层间形成的毛管孔隙分布无显著影响;随着接种密度的增加,颗粒间孔隙度变化不显著而团聚体间孔隙度的相对值和绝对值均显著增加。添加蚯蚓能显著增加土壤活性有机库总量。接种密度的增加对活性有机碳库总量影响不大,但对土壤呼吸速率提升较多,故从温室气体排放角度考虑低接种密度更合适。可见,有机茶园中少量接种蚯蚓即能达到改良土壤结构的效果,并能缓解由于采茶造成的土壤压实问题。 展开更多
关键词 蚯蚓 土壤团聚体 土壤孔径分布 土壤有机碳库 有机茶园
下载PDF
化肥减量配施有机肥对花生土壤有机碳及其组分的影响
18
作者 张慧 王斌 +3 位作者 孙九胜 孙晨 槐国龙 崔磊 《土壤》 CAS CSCD 北大核心 2024年第2期333-341,共9页
为了探究化肥减量配施两种不同黄腐酸钾有机肥对土壤有机碳(SOC)及其组分的影响,采取盆栽试验模拟大田花生种植,以不施肥、纯施化肥为对照,设置100%化肥配施100%有机肥、75%化肥配施25%有机肥、50%化肥配施50%有机肥、25%化肥配施75%有... 为了探究化肥减量配施两种不同黄腐酸钾有机肥对土壤有机碳(SOC)及其组分的影响,采取盆栽试验模拟大田花生种植,以不施肥、纯施化肥为对照,设置100%化肥配施100%有机肥、75%化肥配施25%有机肥、50%化肥配施50%有机肥、25%化肥配施75%有机肥和施用100%有机肥处理,探讨了SOC、可溶性有机碳(DOC)、微生物生物量碳(MBC)、易氧化有机碳(LOC)和惰性有机碳(ROC)在花生不同生育期内的含量特征。结果表明:化肥减量配施有机肥各处理SOC及其组分含量在花生各生育期均表现为:花针期显著高于结荚期和成熟期,其中DOC和MBC含量结荚期显著高于成熟期(P<0.05);各处理SOC及其组分含量均表现为:25%化肥配施75%生化黄腐酸钾处理显著高于不施肥、单施化肥和单施有机肥处理,50%化肥配施50%矿源黄腐酸钾处理显著高于不施肥、单施化肥和单施有机肥处理;其中花针期25%化肥配施75%生化黄腐酸钾处理SOC、DOC、MBC、LOC和ROC含量分别为133.0 g/kg、284.4 mg/kg、269.7 mg/kg、30.76 g/kg和111.2 g/kg,50%化肥配施50%矿源黄腐酸钾处理SOC、DOC、MBC、LOC和ROC含量分别为130.9 g/kg、250.5 mg/kg、251.7 mg/kg、29.86 g/kg和110.8 g/kg。综上,化肥减量配施生化黄腐酸钾对SOC及其组分含量的影响整体优于配施矿源黄腐酸钾,化肥减量配施黄腐酸钾花针期含量显著高于结荚期和成熟期(P<0.05),其中25%化肥配施75%生化黄腐酸钾处理对提升SOC及其组分含量效果最佳。 展开更多
关键词 化肥替代 花生 土壤 有机碳及其组分
下载PDF
水稻秸秆碳组分对土壤有机碳激发效应的影响机理
19
作者 乔云发 王校益 +1 位作者 唐煜杰 苗淑杰 《农业环境科学学报》 CAS CSCD 北大核心 2024年第10期2416-2423,共8页
秸秆还田显著影响土壤有机碳激发效应,秸秆不同碳组分对土壤有机碳激发效应影响的方向和强度尚不明确,作用机理仍不清楚。本研究以淮北平原的黄潮土为研究对象,以13C标记的水稻秸秆的水溶性碳、脂溶性碳、残余碳组分和全秸秆碳作为外源... 秸秆还田显著影响土壤有机碳激发效应,秸秆不同碳组分对土壤有机碳激发效应影响的方向和强度尚不明确,作用机理仍不清楚。本研究以淮北平原的黄潮土为研究对象,以13C标记的水稻秸秆的水溶性碳、脂溶性碳、残余碳组分和全秸秆碳作为外源碳,利用微宇宙培养方法,研究秸秆不同碳组分添加对土壤有机碳激发效应的影响及作用机理。结果表明,添加秸秆不同碳组分土壤CO_(2)-C排放累积量中,添加水溶性碳处理土壤CO_(2)-C排放速率最高,为29.60 mg·kg^(-1)·d^(-1),而添加脂溶碳、残余碳和秸秆碳之间差异不显著。添加水溶性碳和全秸秆两种外源碳为正激发效应,分别为11.16%和13.39%,而添加脂溶碳和残余碳则表现为负激发效应,分别为-17.04%和-3.06%。相关分析表明,土壤酶活性与秸秆碳组分的TN呈显著正相关(r=0.768**),与C/N呈显著负相关关系(r=-0.776**)。正激发效应与秸秆碳组分的TN和土壤酶活性呈显著正相关关系,负激发效应与秸秆碳组分的TC和TN呈正相关关系,与C/N呈显著负相关。综上,秸秆碳组分与土壤自身有机碳分解的“共代谢理论”是产生正激发效应的主要作用机理,秸秆碳组分C/N的“化学计量比理论”是产生负激发效应的主要作用机理。 展开更多
关键词 水稻 秸秆碳组分 激发效应 土壤有机碳 土壤酶
下载PDF
永定河河滨湿地土壤有机碳空间分布特征
20
作者 郭琦 李谦维 +2 位作者 张灵柯 刘新蕾 高俊琴 《生态与农村环境学报》 CAS CSCD 北大核心 2024年第6期824-830,共7页
湿地是碳密度最大的自然生态系统之一,探究湿地土壤有机碳空间分布特征对制定湿地保护管理政策具有重要意义。通过野外调查和样品采集测定,分析了北京市门头沟区永定河13个监测断面的河滨带不同坡位(低位、中位和高位)土壤有机碳含量和... 湿地是碳密度最大的自然生态系统之一,探究湿地土壤有机碳空间分布特征对制定湿地保护管理政策具有重要意义。通过野外调查和样品采集测定,分析了北京市门头沟区永定河13个监测断面的河滨带不同坡位(低位、中位和高位)土壤有机碳含量和密度,阐明了门头沟区永定河河滨湿地土壤有机碳空间分布特征及其主要影响因素。结果表明,门头沟永定河河滨湿地土壤有机碳含量处于2.25~88.67 g·kg^(-1)之间,平均值为17.87 g·kg^(-1);有机碳密度处于2.14~19.13 kg·m^(-2)之间,平均值为7.59 kg·m^(-2)。永定河河滨湿地土壤有机碳密度沿河流径流方向呈现先升高后降低的分布格局,山峡段土壤有机碳密度显著高于平原段;土壤有机碳密度在垂直河岸带方向上呈现低位河滨带向高位河滨带逐渐降低的分布特征。永定河河滨湿地土壤有机碳含量和密度与土壤含水率之间具有显著正相关关系。研究结果可为门头沟永定河湿地保护与管理政策制定提供数据支撑。 展开更多
关键词 永定河 河滨湿地 土壤有机碳 空间分布
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部