Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed ...Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed or basin. Modelling can provide a quantitative and consistent approach to estimate soil erosion and sediment yield under a wide range of conditions. In the present study, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) integrated with GIS has been used to estimate soil loss in the Nethravathi Basin located in the southwestern part of India. The Nethravathi Basin is a tropical coastal humid area having a drainage area of 3128 km2 up to the gauging station. The parameters of RUSLE model were estimated using remote sensing data and the erosion probability zones were determined using GIS. The estimated rainfall erosivity, soil erodibility, topographic and crop management factors range from 2948.16 to 4711.4 MJ/mm.ha-1hr-1/year, 0.10 to 0.44 t ha-1 -MJ-1.mm 1, 0 to 92,774 and 0 to 0.63 respectively. The results indicate that the estimated total annual potential soil loss of about 473,339 t/yr is comparable with the measured sediment of 441,870 t/yr during the water year 2002 2003. The predicted soil erosion rate due to increase in agricultural area is about 14,673.5 t/yr. The probability zone map has been derived by the weighted overlay index method indicate that the major portion of the study area comes under low probability zone and only a small portion comes under high and very high probability zone. The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Nethravathi Basin.展开更多
This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annu...This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
文摘Soil erosion is a serious problem arising from agricultural intensification, land degradation and other anthropogenic activities. Assessment of soil erosion is useful in planning and conservation works in a watershed or basin. Modelling can provide a quantitative and consistent approach to estimate soil erosion and sediment yield under a wide range of conditions. In the present study, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) integrated with GIS has been used to estimate soil loss in the Nethravathi Basin located in the southwestern part of India. The Nethravathi Basin is a tropical coastal humid area having a drainage area of 3128 km2 up to the gauging station. The parameters of RUSLE model were estimated using remote sensing data and the erosion probability zones were determined using GIS. The estimated rainfall erosivity, soil erodibility, topographic and crop management factors range from 2948.16 to 4711.4 MJ/mm.ha-1hr-1/year, 0.10 to 0.44 t ha-1 -MJ-1.mm 1, 0 to 92,774 and 0 to 0.63 respectively. The results indicate that the estimated total annual potential soil loss of about 473,339 t/yr is comparable with the measured sediment of 441,870 t/yr during the water year 2002 2003. The predicted soil erosion rate due to increase in agricultural area is about 14,673.5 t/yr. The probability zone map has been derived by the weighted overlay index method indicate that the major portion of the study area comes under low probability zone and only a small portion comes under high and very high probability zone. The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Nethravathi Basin.
文摘This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.