期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of soil crust on the collapsing erosion of colluvial deposits with granite residual soil
1
作者 LIU Weiping ZENG Bohan +1 位作者 WANG Tianhuan DUAN Junyi 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2579-2591,共13页
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo... Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments. 展开更多
关键词 Granite residual soil Colluvial deposits Slope erosion soil crust Sediment yield
下载PDF
Mesoscopic measurement of damage and shear bands of granite residual soil using Micro-CT and digital volume correlation 被引量:1
2
作者 LI Cheng-sheng ZHANG Bing-xin +2 位作者 LIU Zhi-jun KONG Ling-wei SHU Rong-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3423-3436,共14页
The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechni... The mesomechanics of geotechnical materials are closely related to the macromechanical properties,especially the mesoscale evolution of shear bands,which is helpful for understanding the failure mechanism of geotechnical materials.However,there is lack of effective quantitative analysis method for the complex evolution mechanism of threedimensional shear bands.In this work,we used X-ray computed tomography(CT)to reconstruct volume images and used the digital volume correlation(DVC)method to calculate the three-dimensional strain fields of granite residual soil samples at different loading stages.The trend of the failure surface of the shear bands was obtained by the planar fitting method,and the connectivity index was constructed according to the projection characteristics of the shear bands on the failure trend surface.The results support the following findings:the connectivity index of the shear band increases rapidly and then slowly with increasing axial strain,which is characterized by a near'S'curve.As the stress reaches the peak value,the connectivity index of the shear bands almost exceeds 0.7.The contribution of the new shear band volume to the connectivity of the shear bands becomes increasingly small with increasing axial loading.Affected by quartz grains and stress at the initial stage,the dip angle gradually and finally approaches the included angle of the maximum shear stress from the discrete state with increasing axial loading.The tendency and dip angle of the resulting shear bands are dynamic,and the tendency slightly deflects with increasing loading. 展开更多
关键词 DAMAGE Shear band Digital volume correlation MICRO-CT Granite residual soil
下载PDF
Strength Model of Soda Residue Soil Considering Consolidation Stress and Structural Influence
3
作者 GONG Xiaolong WANG Yuanzhan CHEN Tong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1216-1226,共11页
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s... Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions. 展开更多
关键词 soda residue soil triaxial test strength model soil structure consolidation stress
下载PDF
Evaluating the Effects of Aquaculture Wastewater Irrigation with Fertilizer Reduction on Greenhouse Tomato Production,Economic Benefits and Soil Nitrogen Characteristics
4
作者 Hang Guo Linxian Liao +4 位作者 Zhenhao Zheng Junzeng Xu Qi Wei Peng Chen Kechun Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第12期3291-3304,共14页
The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the patt... The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status,fruit yield and water-fertilizer use efficiency for tomato production.In this context,the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields.Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization used as control(CK),1.75 L aquaculture wastewater with base fertilizer(W1),2 L aquaculture wastewater with base fertilizer;and 2.25 L aquaculture wastewater with base fertilizer(W3).We examined the effects of aquaculture wastewater irrigation on soil nitrogen distribution,Nrelated hydrolases,tomato yield,and economic benefits.The results showed that the control treatment had the highest N input,about 24.68%higher than the W3 treatment,while the yield was only about 7.81%higher than W3.This indicated that the overuse of chemical fertilizer was present in the current tomato production.Although the reduction of fertilizer in aquaculture wastewater irrigation caused a decrease in tomato production,this economic loss can be compensated by cost savings in the wastewater disposal.Among aquaculture wastewater treatments,the W3 treatment had the highest overall benefit,achieving 62.63%freshwater savings,37.50%fertilizer input reduction,and an economic return of approximately 19,466 Yuan per hectare higher than the control.Additionally,increasing the irrigation volume of aquaculture wastewater could provide more available nutrients to the soil,which were more prevalent in the form of organic nitrogen.The lower soil nitrate reductase activities(NR)under aquaculture wastewater treatments after harvesting also proved that this pattern was beneficial to reduce soil nitrate nitrogen residues.Overall,the results demonstrate that aquaculture wastewater irrigation alleviates the soil nitrate residues,improves nutrient availability,and results in more economic returns with water and fertilizer conservation for the greenhouse production of tomatoes. 展开更多
关键词 Aquaculture wastewater irrigation fertilizer reduction soil nitrogen residue tomato production
下载PDF
Effects of Agro-Ecological Practices on the Productivity of Orange-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam) and Soil Fertility in the Sudano-Sahelian Zone of Burkina Faso
5
作者 Koulibi Fidèle Zongo Aboubacar Coulibaly +4 位作者 Daouda Guebre Aïssatou Naba Hervé Nandkangre Abdramane Sanon Edmond Hien 《Agricultural Sciences》 2023年第12期1624-1642,共19页
This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian croppi... This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil. 展开更多
关键词 Orange-Fleshed Sweet Potato COMPOST Wood Ash Vegetative Growth Yield soil Residual Fertility
下载PDF
Residue and Degradation Dynamic of Buprofezin in Citrus and Soil
6
作者 李小娇 龚道新 +4 位作者 成应向 向仁军 张杰 伍一红 罗杨 《Agricultural Science & Technology》 CAS 2010年第11期13-16,共4页
[Objective] The paper was to detect the residue of buprofezin in citrus and soil.[Method] Gas chromatography(GC)method was used to measure the residue of buprofezin in citrus and soil.[Result] The average recovery r... [Objective] The paper was to detect the residue of buprofezin in citrus and soil.[Method] Gas chromatography(GC)method was used to measure the residue of buprofezin in citrus and soil.[Result] The average recovery rate of buprofezin in entire citrus fruit was 96.17%-97.38%,and the variation coefficient was 6.10%-9.07%;the average recovery rate in pulp was 95.24%-105.46%,and the variation coefficient was 3.30%-6.01%;the average recovery rate in peel was 88.76%-93.64%,and the variation coefficient was 5.12%-6.27%;the average recovery rate in soil was 97.79%-104.3%,and the variation coefficient was 2.45%-9.21%.The degradation dynamics and the final residue results of buprofezin in citrus and soil showed that the degradation half-lives in citrus in Changsha(Hunan),Hangzhou(Zhejiang)and Guiyang(Guizhou)were 7.65,7.64 and 8.40 d,and the degradation half-lives in soil in three places were 13.75,9.97 and 10.18 d,respectively.[Conclusion] When 25% buprofezin SC watered agent were sprayed in citrus fruits for 2-3 times according to the recommended dose of 166.7-250.0 mg/L,the safe period of buprofezin in citrus could be set as 14 d. 展开更多
关键词 BUPROFEZIN CITRUS soil residue Degradation dynamic
下载PDF
Use of X-ray computed tomography to study structures and particle contacts of granite residual soil 被引量:14
7
作者 SUN Yin-lei TANG Lian-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期938-954,共17页
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d... A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil. 展开更多
关键词 X-ray computed tomography granite residual soil RECONSTRUCTION REGULARIZATION particle contact
下载PDF
Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography 被引量:14
8
作者 Ran An Lingwei Kong +1 位作者 Xianwei Zhang Chengsheng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期851-860,共10页
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to... Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results. 展开更多
关键词 Granite residual soil Dry-wet cycle X-ray micro computed tomography(micro-CT) Three-dimensional(3D)pore distribution Seepage simulations PERMEABILITY
下载PDF
Influence of groundwater drawdown on excavation responses e A case history in Bukit Timah granitic residual soils 被引量:11
9
作者 Wengang Zhang Wei Wang +3 位作者 Dong Zhou Runhong Zhang A.T.C. Goh Zhongjie Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期856-864,共9页
Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BT... Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BTG) residual soils and characterized by significant groundwater drawdown, due to dewatering work in complex site conditions, insufficient effective waterproof measures and more permeable soils. A two-dimensional numerical model was developed for back analysis of retaining wall movement and ground surface settlement. Comparisons of these measured excavation responses with the calculated performances were carried out, upon which the numerical simulation procedures were calibrated. In addition, the influences of groundwater drawdown on the wall deflection and ground surface settlement were numerically investigated and summarized. The performances were also compared with some commonly used empirical charts, and the results indicated that these charts are less applicable for cases with significant groundwater drawdowns. It is expected that these general behaviors will provide useful references and insights for future projects involving excavation in BTG residual soils under significant groundwater drawdowns. 展开更多
关键词 Braced excavation Bukit Timah granitic (BTG) residual soil Wall deflection Groundwater drawdown Empirical charts
下载PDF
Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles 被引量:5
10
作者 Yinlei Sun Qixin Liu +2 位作者 Hansheng Xu Yuxi Wang Liansheng Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期831-845,共15页
The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of grani... The disintegration of granite residual soil is especially affected by variations in physical and chemical properties. Serious geologic hazards or engineering problems are closely related to the disintegration of granite residual soil in certain areas. Research on the mechanical properties and controlling mechanisms of disintegration has become a hot issue in practical engineering. In this paper, the disintegration characteristics of improved granite residual soil are studied by using a wet and dry cycle disintegration instrument, and the improvement mechanism is analyzed. The results show that the disintegration amounts and disintegration ratios of soil samples treated with different curing agents are obviously different. The disintegration process of improved granite residual soil can be roughly divided into 5 stages:the forcible water intrusion stage, microcrack and fissure development stage, curing and strengthening stage, stable stage, and sudden disintegration stage. The disintegration of granite residual soil is caused by the weakening of the cementation between soil particles under the action of water. When the disintegration force is greater than the anti-disintegration force of soil, the soil will disintegrate. Cement and lime mainly rely on ion exchange agglomeration, the inclusion effect of curing agents on soil particles, the hard coagulation reaction and carbonation to strengthen granite residual soil. Kaolinite mainly depends on the reversibility of its own cementation to improve and strengthen granite residual soil. The reversibility of kaolinite cementation is verified by investigating pure kaolinite with a tensile, soaking, drying and tensile test cycle. Research on the disintegration characteristics and disintegration mechanism of improved granite residual soil is of certain reference value for soil modification. 展开更多
关键词 Granite residual soil DISINTEGRATION Wet and dry cycle MECHANISM Improved soil
下载PDF
Rehabilitation of bauxite residue to support soil development and grassland establishment 被引量:7
11
作者 XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期353-360,共8页
Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high e... Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high exchangeable sodium(ESP)and poor nutrient status.Amendment with gypsum is effective in improving residue physical and chemical properties and promoting seed establishment and growth.Application of organics(e.g.compost)can address nutrient deficiencies but supplemental fertilizer additions may be required.A series of germination bioassays were performed on residue to determine candidate species and optimum rehabilitation application rates.Subsequent field trials assessed establishment of grassland species Holcus lanatus and Trifolium pratense as well as physical and chemical properties of amended residue.Follow up monitoring over five years assessed elemental content in grassland and species dynamics.With co-application of the amendments several grassland species can grow on the residue.Over time other plant species can invade the restored area and fast growing nutrient demanding grasses are replaced.Scrub species can establish within a 5 Yr period and there is evidence of nutrient cycling.High pH,sodicity and nutrient deficiencies are the major limiting factors to establishing grassland on residue.Following restoration several plant species can grow on amended residue. 展开更多
关键词 bauxite residue substrate amendment soil development soil formation in bauxite residue vegetation establishment
下载PDF
Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall 被引量:4
12
作者 BAI Hui-lin FENG Wen-kai +7 位作者 LI Shuang-quan YE Long-zhen WU Zhong-teng HU Rui DAI Hong-chuan HU Yun-peng YI Xiao-yu DENG Peng-cheng 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1541-1557,共17页
Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only ... Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only helpful to the local government in disaster prevention, but also the theoretical basis of regional early warning technology. To determine the whole-process characteristics and failure mechanisms of flow-slide failure of granite residual soil slopes, we conducted a detailed hazard investigation in Minqing County, Fujian Province, which was impacted by Typhoon Lupit-induced heavy rainfall in August 2021. Based on the investigation and preliminary analysis results, we conducted indoor artificial rainfall physical model tests and obtained the whole-process characteristics of flow-slide failure of granite residual soil landslides. Under the action of heavy rainfall, a granite residual soil slope experiences initial deformation at the slope toe and exhibits development characteristics of continuous traction deformation toward the middle and upper parts of the slope. The critical volumetric water content during slope failure is approximately 53%. Granite residual soil is in a state of high volumetric water content under heavy rainfall conditions, and the shear strength decreases, resulting in a decrease in stability and finally failure occurrence. The new free face generated after failure constitutes an adverse condition for continued traction deformation and failure. As the soil permeability(cm/h) is less than the rainfall intensity(mm/h), and it is difficult for rainwater to continuously infiltrate in short-term rainfall, the influence depth of heavy rainfall is limited. The load of loose deposits at the slope foot also limits the development of deep deformation and failure. With the continuous effect of heavy rainfall, the surface runoff increases gradually, and the influence mode changes from instability failure caused by rainfall infiltration to erosion and scouring of surface runoff on slope surface. Transportation of loose materials by surface runoff is an important reason for prominent siltation in disaster-prone areas. 展开更多
关键词 Granite residual soil Flow slide process Failure mechanism Artificial rainfall Critical volumetric water content
下载PDF
Degradation Kinetics of Petroleum Contaminants in Soil-Water Systems 被引量:2
13
作者 ZHENGXilai WANGBingchen +1 位作者 LIYuying XIAWenxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期825-828,共4页
On the basis of site investigation and sample collection of petroleum contaminants in the soil-water-crop system in the Shenyang-Fushun sewage irrigation area, the physical-chemical-biological compositions of the unsa... On the basis of site investigation and sample collection of petroleum contaminants in the soil-water-crop system in the Shenyang-Fushun sewage irrigation area, the physical-chemical-biological compositions of the unsaturated zone is analyzed systematically in this paper. At the same time, the degradation kinetics of residual and aqueous oils is determined through biodegradation tests. The studies show that dominant microorganisms have been formed in the soils after long-term sewage irrigation. The microorganisms mainly include bacteria, and a few of fungus and actinomycetes. After a 110-days' biodegradation test, the degradation rate of residual oil is 9.74%-10.63%, while the degradation rate of aqueous oil reaches 62.43%. This indicates that the degradation rate of low-carbon aqueous oil is higher than that of high-carbon residual oil. In addition, although microbial degradation of petroleum contaminants in soils is suitable to the first-order kinetics equation, the half-lives of aqueous oil, No. 20 heavy diesel and residual oil in the surface soils (L2-1, S1-1 and X1-1) are 1732 h, 3465 h and 17325 h, respectively. 展开更多
关键词 dominant microorganisms soil residual oil aqueous oil biodegradation rate
下载PDF
Evolution of cracks in the shear bands of granite residual soil 被引量:5
14
作者 Chengsheng Li Lingwei Kong Ran An 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1956-1966,共11页
The evolution of shear bands and cracks plays an important role in landslides.However,there is no systematic method for classification of the cracks,which can be used to analyze the evolution of cracks in shear bands.... The evolution of shear bands and cracks plays an important role in landslides.However,there is no systematic method for classification of the cracks,which can be used to analyze the evolution of cracks in shear bands.In this study,X-ray computed tomography(CT)is used to observe the behavior of granite residual soil during a triaxial shear process.Based on the digital volume correlation(DVC)method,a crack classification method is established according to the connectivity characteristics of cracks before and after loading.Cracks are then divided into six classes:obsolete,brand-new,isolated,split,combined,and compound.With evolution of the shear bands,a large number of brand-new cracks accelerate the damages of materials at the mesoscale,resulting in a sharp decrease in strength.The volume of brandnew cracks increases rapidly with increasing axial strain,and their volume is greater than 50%when the strain reaches 12%,while the volume of compound cracks decreases from 54%to 21%.As cracks are the weakest areas in a material,brand-new cracks accelerate the development of shear bands.Finally,the coupling effect of shear bands and cracks destroys the soil strength. 展开更多
关键词 Shear band Crack classification method Digital volume correlation(DVC) X-ray computed tomography(CT) Granite residual soil
下载PDF
Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer 被引量:1
15
作者 S.Hamed Mousavi Mohammed A.Gabr Roy H.Borden 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期323-332,共10页
Dynamic cone penetrometer(DCP) has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resil... Dynamic cone penetrometer(DCP) has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers(a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a200 mm aggregate base course). In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils.Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on "undisturbed" soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide(MEPDG) recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients(k;,k;and k;) was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements,but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature. 展开更多
关键词 Dynamic cone penetrometer(DCP) Resilient modulus Mechanistic-empirical pavement design guide(MEPDG) Residual soils Subgrade soils
下载PDF
Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests 被引量:1
16
作者 TANG Lian-sheng ZHAO Zhan-lun +2 位作者 CHEN Hao-kun WU Yan-ping ZENG Yu-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期728-742,共15页
The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on... The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model. 展开更多
关键词 granite residual soil creep tests dynamic stress accumulation model
下载PDF
Effects of Different Sowing Dates on Weed Suppression and Pesticide Residue in Soil
17
作者 刘统高 谢应忠 《Agricultural Science & Technology》 CAS 2016年第3期650-654,661,共6页
[Objective] To effectively suppress weeds and degrade pesticide residues in soil, pollution-free agricultural production is a very important way. [Method] In regions where high residual pesticides had been applied for... [Objective] To effectively suppress weeds and degrade pesticide residues in soil, pollution-free agricultural production is a very important way. [Method] In regions where high residual pesticides had been applied for a long term, 2-3 consecutive years of shallow ploughing after the autumn harvest, early shallow ploughing and sowing later in the next spring, and late ploughing and sowing were conducted,and the effects of the three measures on weed suppression and reduction of pesticide residue in soil were analyzed by measuring the length and fresh weight of crop radicles. [Result] Trifluralin applied in the A. membranaceus field for a long term limited the growth of the alfalfa seedlings. That is, the radicle length of each plant was 2.1-2.9 cm shorter than that of the control, and the fresh weight of each plant reduced by 0.19-0.20 g. Metsulfuron methyl applied in the alfalfa field for a long term also limited the growth of the alfalfa seedlings, that is, the radicle length of each plant was 1.9-2.0 cm shorter than that of the control, and the fresh weight of each plant reduced by 0.13-0.15 g. Shallow ploughing was conducted within two days after the autumn harvest, and all weed seeds on the ground were plowed into the plough layer 0-10 cm instead of deep soil. Early shallow ploughing in the next spring could make most seeds of weeds in surface soil sprout early, and sowing was conducted after 10 d, so that about 40% of weeds sprouting early were killed off. However, after shallow ploughing and sowing were conducted 10 d later than the normal sowing period, and around 30% of weeds were killed off. In addition,the weeds left in soil should be removed manually at the seedling stage or in late period. These measures had no adverse impact on the growth and development of crop radicles and yield. [Conclusion] In regions where pesticides with long-term residue had been applied for a long term, 2-3 consecutive years of shallow ploughing after the autumn harvest, different farming and sowing measures and artificia weeding could suppress weeds in the crop fields effectively, did not pollute soil environment, and promoted the degradation of pesticides left in soil. 展开更多
关键词 Different farming periods WEED SUPPRESSION Pesticide residue in soil
下载PDF
Indexing the engineering properties of residual soils in the southern slopes of Mashhad,NE Iran
18
作者 Saeedeh HOSSEINI Gholam Reza LASHKARIPOUR +1 位作者 Naser HAFEZI MOGHADDAS Mohammad GHAFOORI 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2179-2202,共24页
Residual soils are weathering products of rocks that are commonly found under unsaturated conditions.The properties of residual soils are a function of the degree of weathering.A series of index properties,engineering... Residual soils are weathering products of rocks that are commonly found under unsaturated conditions.The properties of residual soils are a function of the degree of weathering.A series of index properties,engineering properties and geophysics survey examinations were performed on residual soils from two major geological formations in Iran.In the present research,the index properties of residual soils in the south of Mashhad city in Iran are investigated.Natural and artificial trenches were analyzed for evaluating the weathering profiles and collecting soil samples.Disturbed and undisturbed samples were obtained from each of the soil profile horizons resulting from weathering of different parent rocks.Subsequently,physical properties and mechanical properties of the soil samples were determined in accordance with ASTM standards.Also,the mineralogical composition,chemistry,and texture of the soil were evaluated in 51 profiles.The field observations showed the difference in the weathering profile of residual soils deposited on various rocks(igneous,sedimentary,and metamorphic).These profiles mainly consisted of two horizons includingresidual soil on top and saprolite at the bottom.The results of laboratory tests and geotechnical data showed that the properties of residual soil samples change by depth.Moreover,depending on the type of origin rock,the properties are different in various types of residual soils.In most of the samples,the moisture content of soil horizons was also increased by depth.Based on the unified soil classification(USCS),the soils of the upper horizons appeared to be classified as ML(Lean silt)and CL(Lean clay)while the soils of the lower horizons(saprolite zone)fall in SC(clayey sand),SM(silty sand),and SW(wellgraded sand)classes.Moreover,the results demonstrated that the particle size of the soil was increased by depth.Comparison of results of the geotechnical tests showed that properties of residual soils are changed by variations of depth,weathering level,and type of parent rock.Considering the concentration of the number of lines and the concentration of the points of intersection,the length and dimension fractal of lineaments in the southeastern part of the study area,it is evident that this zone possesses weathering severity and soil thickness.Fieldwork data from this zone have also verified the severity of weathering conditions.The analysis of lineaments trends in different parts of the study area indicated that the lineaments with the NW-SE trend have a strong effect on weathering development.The weathering depth depends on the orientation of bedding joints with respect to the slope in the study area.Slope inclination and soil thickness are controlled by weathering and erosion processes. 展开更多
关键词 Residual soil Rock weathering Geomechanical characteristics Mashhad City
下载PDF
Evaluation of Coefficient of Permeability on Contaminated Granitic Residual Soil
19
作者 L.J. Andrade Pais L.M. Ferreira Gomes 《Journal of Environmental Science and Engineering》 2011年第2期206-213,共8页
This paper reports laboratory research carried out on natural and contaminated granitic residual soil from Covilha region (Portugal) to evaluate the coefficient of permeability in accordance with Darcy's law. The s... This paper reports laboratory research carried out on natural and contaminated granitic residual soil from Covilha region (Portugal) to evaluate the coefficient of permeability in accordance with Darcy's law. The soils are contaminated with hydrocarbon (Benzene Toluene Etilbenzene and Xilenes elements) and leached of urban solid waste. The specimens remained saturated and the consolidation and swelling are substantially completed at different effective confining pressures (25 to 400 kPa) before the measurements are performed at different hydraulic gradient to determine the effect of the void ratio, fabric and contamination of soil. 展开更多
关键词 Granitic residual soil contaminated soil coefficient of permeability.
下载PDF
Influence of crack characteristics on the morphological development of Benggang and hydrological processes
20
作者 LIU Wei-ping WANG Shu-han +3 位作者 TIAN Si-wen OUYANG Guo-quan HU Li-na YUAN Zhi-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1900-1910,共11页
Benggang is a special type of soil erosion,which widely distributes in the granite residual soil area of southern China.Owing to the influence of local climate and topography,shallow cracks having different morphologi... Benggang is a special type of soil erosion,which widely distributes in the granite residual soil area of southern China.Owing to the influence of local climate and topography,shallow cracks having different morphological characteristics are easily formed on the slope surface.These shallow cracks damage the surface structure of the slope and accelerate water infiltration,making it easier to cause severe soil and water loss.However,the mechanism of Benggang process is still unclear,especially for slopes with different shallow crack characteristics.In this study,granite residual soil was collected from Benngang erosion area in Yudu County,Jiangxi Province,southern China.Three experimental treatments with slope surface crack rates of 0%,5.23%,and 11.70%were performed.Simultaneous monitoring of moisture content and soil temperature in the slope were carried out during rainfall,and the characteristics of preferential flow were monitored with different crack rates.Morphological development and evolution process of Benggang with different crack rates were studied.Results show that high surface crack rate of the shallow surface on the slope accelerated the development of shallow gully erosion,leading to premature occurrence of gully erosion.As the shallow crack rate increased from 0%to 5.23%and 11.70%,the width-depth ratio of the rills at the slope bottom increased from 0.69 to 1.02 and 1.16,respectively.At the same time,a correlation between moisture and temperature data was observed for the process of water-heat coupled migration.The upper soil temperature of slope decreased quickly due to preferential flow.The simultaneous monitoring of soil moisture and temperature can effectively track preferential flow and indicate the water movement.Temperature data was a more sensitive indicator of the seepage paths of preferential flow compared to moisture data. 展开更多
关键词 Granite residual soil Benggang Crack characteristics Preferential flow
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部