Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore...Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.展开更多
Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to eva...Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to evaluate soil aggregate stability and to determine the relationship between soil organic carbon (SOC) and soil aggregate stability. Soil samples at 0 cm-20 cm layer were adopted from a long-term (16 a) field experiment including conventional tillage: plain culture, summer rice crop and winter upland crop under drained conditions (PUR-r); and conservation tillage: ridge culture without tillage, summer rice and winter fallow with floodwater layer annually (NTR-f), winter upland crop under drained conditions (NTR-r), and wide ridge culture without tillage, summer rice crop and winter upland crop under conditions (NTRw-r), respectively. Different pretreatments, such as slaking in fast wetting, wetting and subsequent slaking, were applied to simulate the breakdown mechanisms of aggregates in paddy soil. The results show that soil particles contents were mainly consisted of silt (0.050 mm to 1.000 mm) in fraction of 42.9% to 51.2%, sand (0.050 mm to 0.001 mm) in fraction of 28.0% to 31.8%, and clay (<0.001 mm) in fraction of 17.9% to 25.4%. The amount of aggregate-size was greatly observed in fraction of 2.000 mm-6.720 mm under ridge culture in paddy soil (more than 50$) under slaking and wetting pretreatment. The proportion of soil macro-aggregates (>0.250 mm) in conservation tillage was greatly higher than that in conventional tillage under subsequent fast slaking treatment. Minimal differences of aggregate stability between slaking in fast wetting and wetting were observed, while significant differences were found between ridge culture and plain culture. The aggregate stability under slaking treatment ranked in the order of NTR-r>NTRw-r> NTR-f > PUR-r, while under wetting was NTRw-r > NTR-r > NTR-f >PUR-r. There was a positive correlation between the aggregate stability and SOC concentration under wetting, and a low correlation was observed under slaking pretreatment. Soil exposure with tillage and lack of rice/rape-seed stubble inputs caused declines in aggregation and organic carbon, both of which make soil susceptible to water erosion. Adoption of ridge culture with no-tillage integrated with crop rotation and stubble mulch significantly altered soil organic concentration. It was a valuable conservation practice for soil aggregation and soil organic carbon sequestration on paddy soil.展开更多
Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the ...Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the rainy season. In this study, field experiments were conducted from 2017 to 2020 in a pear orchard in the North China Plain to investigate the effects of mulching broad ridges (0.3 m in height and 2 m in width) with WPF on soil temperature and moisture, nitrogen leaching, vegetative and reproductive growth of young pear trees(Pyrus bretschneideri Rehd.‘Yuluxiang’). The experiments involved two treatments, namely, control (traditional no-ridge planting without mulching) and mulching broad ridges with WPF (RM treatment). The results showed that the RM treatment increased soil moisture and temperature and decreased nitrogen leaching, resulting in vigorous growth of the young pear trees. Moreover, the RM treatment increased the tree trunk cross-sectional area and height of the young pear trees by 37%and 8%in 2020, respectively. The nitrate nitrogen content at the soil layer depth of 0-30 cm was significantly higher in the RM than that in control. Furthermore, the RM treatment significantly increased the fruit yield due to larger tree size. In addition, compared with control, significantly higher fruit soluble solid content of RM treatment was detected in 2020. High precipitation (423 mm) occurred during fruit enlargement stage in 2020, RM treatment decreased the rainfall infiltration in the ridge and the soil moisture in root region, resulting in the improvement of fruit quality, compared with control.Therefore, mulching broad ridges with WPF can be implemented to increase soil moisture during drought season, soil temperature, and nitrate nitrogen content, thereby improving the growth and fruit yield of young pear trees. Additionally, it can reduce soil moisture in the root zone during the rainy season and improve the fruit quality of the trees. Finally, it can reduce nitrate nitrogen leaching, thereby reducing environmental pollution.展开更多
Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-e...Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-erosion experiments for the contour wide ridge(CWR),contour narrow ridge(CNR),longitudinal wide ridge(LWR),and longitudinal narrow ridge(LNR)were conducted under four rainfall intensities,with slope gradients of 3°and 5°.For the runoff event,the runoff depth order was LNR>LWR>CWR>CNR;the soil loss order was CNR>LNR>CWR>LWR.The product of slope factor(S)and rainfall erosivity(R)or runoff depth(D),can be adopted as critical thresholds for different stages of runoff and soil erosion process.For the longitudinal ridge systems,R values were provided for LWR and LNR and were the beginning of sheet flow,whereas the product of rainfall erosivity and slope factor(RS)values were provided for LWR and LNR as the beginning of the accelerated concentrated flow.For the contour ridge systems,R values were provided for CWR and CNR as critical thresholds for the beginning of overflow.The product of runoff depth and slope factor(DS)values were 9.98 and 7.73 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of ridge failure;the DS values were 18.45 and 12.75 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of the formation of ephemeral gully erosion.The critical thresholds can distinguish different stages of soil erosion process modelling.展开更多
Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To...Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To address the importance of seepage in soil erosion modeling, a total of 23 treatments with 3 factors, row grade, field slope and ridge height, in 5 gradients were arranged in an orthogonal rotatable central composite design. The second-order polynomial regression model for predicting the sediment yield was improved by using the measured or predicted seepage discharge as an input factor, which increased the coefficient of determination(R^2) from 0.743 to 0.915 or 0.893. The improved regression models combined with the measured seepage discharge had a lower P(0.007) compared to those combined with the predicted seepage discharge(P=0.016). With the measured seepage discharge incorporated, some significant(P<0.050) effects and interactions of influential factors on sediment yield were detected, including the row grade and its interactions with the field slope, ridge height and seepage discharge, the quadratic terms of the field slope and its interactions with the row grade and seepage discharge. In the regression model with the predicted seepage discharge as an influencing factor, only the interaction between row grade and seepage discharge significantly affected the sediment yield. The regression model incorporated with predicted seepage discharge may be expressed simply and can be used effectively when measured seepage discharge data are not available.展开更多
基金Supported by the National Basic Research Program of China(2007CB407204)~~
文摘Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.
基金Funded by the Key Projects of National Science & Technology Pillar Program (No.2006BAD05B0-02) Sichuan Educational Committee for Youths (No.09ZB049)
文摘Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of China. The paper is to evaluate soil aggregate stability and to determine the relationship between soil organic carbon (SOC) and soil aggregate stability. Soil samples at 0 cm-20 cm layer were adopted from a long-term (16 a) field experiment including conventional tillage: plain culture, summer rice crop and winter upland crop under drained conditions (PUR-r); and conservation tillage: ridge culture without tillage, summer rice and winter fallow with floodwater layer annually (NTR-f), winter upland crop under drained conditions (NTR-r), and wide ridge culture without tillage, summer rice crop and winter upland crop under conditions (NTRw-r), respectively. Different pretreatments, such as slaking in fast wetting, wetting and subsequent slaking, were applied to simulate the breakdown mechanisms of aggregates in paddy soil. The results show that soil particles contents were mainly consisted of silt (0.050 mm to 1.000 mm) in fraction of 42.9% to 51.2%, sand (0.050 mm to 0.001 mm) in fraction of 28.0% to 31.8%, and clay (<0.001 mm) in fraction of 17.9% to 25.4%. The amount of aggregate-size was greatly observed in fraction of 2.000 mm-6.720 mm under ridge culture in paddy soil (more than 50$) under slaking and wetting pretreatment. The proportion of soil macro-aggregates (>0.250 mm) in conservation tillage was greatly higher than that in conventional tillage under subsequent fast slaking treatment. Minimal differences of aggregate stability between slaking in fast wetting and wetting were observed, while significant differences were found between ridge culture and plain culture. The aggregate stability under slaking treatment ranked in the order of NTR-r>NTRw-r> NTR-f > PUR-r, while under wetting was NTRw-r > NTR-r > NTR-f >PUR-r. There was a positive correlation between the aggregate stability and SOC concentration under wetting, and a low correlation was observed under slaking pretreatment. Soil exposure with tillage and lack of rice/rape-seed stubble inputs caused declines in aggregation and organic carbon, both of which make soil susceptible to water erosion. Adoption of ridge culture with no-tillage integrated with crop rotation and stubble mulch significantly altered soil organic concentration. It was a valuable conservation practice for soil aggregation and soil organic carbon sequestration on paddy soil.
基金financed by the China National Natural Science Fund (Grant No. 51609006)Science and Technology Innovation Capacity Building Program of Beijing Academy of Agriculture and Forestry (Grant No. KJCX20210437)+2 种基金the Presidential Foundation of the Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences (Grant No. 201902)the National Key Technology R & D Program of China (Grant No. 2019YFD1000100)。
文摘Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the rainy season. In this study, field experiments were conducted from 2017 to 2020 in a pear orchard in the North China Plain to investigate the effects of mulching broad ridges (0.3 m in height and 2 m in width) with WPF on soil temperature and moisture, nitrogen leaching, vegetative and reproductive growth of young pear trees(Pyrus bretschneideri Rehd.‘Yuluxiang’). The experiments involved two treatments, namely, control (traditional no-ridge planting without mulching) and mulching broad ridges with WPF (RM treatment). The results showed that the RM treatment increased soil moisture and temperature and decreased nitrogen leaching, resulting in vigorous growth of the young pear trees. Moreover, the RM treatment increased the tree trunk cross-sectional area and height of the young pear trees by 37%and 8%in 2020, respectively. The nitrate nitrogen content at the soil layer depth of 0-30 cm was significantly higher in the RM than that in control. Furthermore, the RM treatment significantly increased the fruit yield due to larger tree size. In addition, compared with control, significantly higher fruit soluble solid content of RM treatment was detected in 2020. High precipitation (423 mm) occurred during fruit enlargement stage in 2020, RM treatment decreased the rainfall infiltration in the ridge and the soil moisture in root region, resulting in the improvement of fruit quality, compared with control.Therefore, mulching broad ridges with WPF can be implemented to increase soil moisture during drought season, soil temperature, and nitrate nitrogen content, thereby improving the growth and fruit yield of young pear trees. Additionally, it can reduce soil moisture in the root zone during the rainy season and improve the fruit quality of the trees. Finally, it can reduce nitrate nitrogen leaching, thereby reducing environmental pollution.
基金funded by the IWHR Research&Development Support Program(Grant SE0145B032021)the National Key Research and Development Program of China(Grant 2018YFC0507002)。
文摘Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-erosion experiments for the contour wide ridge(CWR),contour narrow ridge(CNR),longitudinal wide ridge(LWR),and longitudinal narrow ridge(LNR)were conducted under four rainfall intensities,with slope gradients of 3°and 5°.For the runoff event,the runoff depth order was LNR>LWR>CWR>CNR;the soil loss order was CNR>LNR>CWR>LWR.The product of slope factor(S)and rainfall erosivity(R)or runoff depth(D),can be adopted as critical thresholds for different stages of runoff and soil erosion process.For the longitudinal ridge systems,R values were provided for LWR and LNR and were the beginning of sheet flow,whereas the product of rainfall erosivity and slope factor(RS)values were provided for LWR and LNR as the beginning of the accelerated concentrated flow.For the contour ridge systems,R values were provided for CWR and CNR as critical thresholds for the beginning of overflow.The product of runoff depth and slope factor(DS)values were 9.98 and 7.73 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of ridge failure;the DS values were 18.45 and 12.75 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of the formation of ephemeral gully erosion.The critical thresholds can distinguish different stages of soil erosion process modelling.
基金funded by the National Natural Science Foundation of China (41701311)the Natural Science Foundation of Shandong Province (ZR2017JL019)+1 种基金the Project of Introducing and Cultivating Young Talent in the Universities of Shandong Province (LUJIAORENZI20199)the Shandong Key Research and Development Program (2018GSF117001)。
文摘Contour ridge systems may lead to seepage that could result in serious soil erosion. Modeling soil erosion under seepage conditions in a contour ridge system has been overlooked in most current soil erosion models. To address the importance of seepage in soil erosion modeling, a total of 23 treatments with 3 factors, row grade, field slope and ridge height, in 5 gradients were arranged in an orthogonal rotatable central composite design. The second-order polynomial regression model for predicting the sediment yield was improved by using the measured or predicted seepage discharge as an input factor, which increased the coefficient of determination(R^2) from 0.743 to 0.915 or 0.893. The improved regression models combined with the measured seepage discharge had a lower P(0.007) compared to those combined with the predicted seepage discharge(P=0.016). With the measured seepage discharge incorporated, some significant(P<0.050) effects and interactions of influential factors on sediment yield were detected, including the row grade and its interactions with the field slope, ridge height and seepage discharge, the quadratic terms of the field slope and its interactions with the row grade and seepage discharge. In the regression model with the predicted seepage discharge as an influencing factor, only the interaction between row grade and seepage discharge significantly affected the sediment yield. The regression model incorporated with predicted seepage discharge may be expressed simply and can be used effectively when measured seepage discharge data are not available.