Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass...Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.展开更多
Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soi...Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.展开更多
Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivaria...Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivariate soil quality indice (SQI) models, such as additive quality index (AQI), weighted quality indexes (WQI<sub>add</sub> and WQI<sub>com</sub>) and Nemoro quality index (NQI), applied to two approaches of indicator selection: total data set (TDS) and minimum data set (MDS). Physical and chemical soil indicators were extracted from the ORSTOM’s reports resulting from a sampling campaign in different provinces of Gabon. The TDS approach shows soil quality status according to eleven soil indicators extracted from the analysis of 1,059 samples from arable soil layer (0 - 30 cm depth). The results indicated that 87% of all provinces presented a very low soil quality (Q5) whatever the model. Among soil indicators, exchangeable K<sup>+</sup> and Mg<sup>2+</sup>, bulk density and C/N ratio were retained in MDS, using principal component analysis (PCA). In the MDS approach, 50 to 63% of provinces had low soil quality grades with AQI, WQI<sub>add</sub> and NQI, whereas the total was observed with WQI<sub>com</sub>. Only 25% of provinces had medium soil quality grades with AQI and NQI models, while 12.5% (NQI) and 25% (AQI) presented high quality grades. Robust statistical analyses confirmed the accuracy and validation (0.80 r P ≤ 0.016) of AQI, WQI<sub>add</sub> and NQI into the TDS and MDS approaches. The same sensitivity index value (1.53) was obtained with AQI and WQI<sub>add</sub>. However, WQI<sub>add</sub> was chosen as the best SQI model, according to its high linear regression value (R<sup>2</sup> = 0.82) between TDS and MDS. This study has important implications in decision-making on monitoring, evaluation and sustainable management of Gabonese soils in a pedoclimatic context unfavorable to plant growth.展开更多
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration...The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.展开更多
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their...Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.展开更多
Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility ...Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary.展开更多
Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used...Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. .展开更多
This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the s...This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.展开更多
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm...Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.展开更多
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa...A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.展开更多
[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected la...[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.展开更多
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg&...Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg·hm^2·a^(-1), MN, 50 kg·hm^2·a^(-1); HN, 150 kg·hm^2·a^(-1)). NH_4NO_3 was used as nitrogen source to analyze the number of microorganisms in soil layers of 0–20 cm and 20–40 cm and explore the effect of different degrees of nitrogen deposition on soil microorganisms in grassland, woodland, and woodlandgrassland border. The results showed that: the number of bacteria in the grassland increased significantly under the treatment of LN, and the number of bacteria in the woodland-grassland border and woodland had a rising response under the influence of nitrogen deposition; the number of actinomycetes in the grassland increased in MN and HN treatment, and significantly increased in the border and woodland under LN treatment; the number of molds decreased sharply in the grassland, woodland, and woodland-grassland border.展开更多
Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their...Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon(TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, weconcluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO_3 precipitation.展开更多
[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil o...[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.展开更多
Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on th...Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied.展开更多
Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise ir...Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.展开更多
Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations...Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.展开更多
Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regi...Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.展开更多
The impoverishment of soil nutrients of nine gully head areas in Yuanmou Basin is assessed through an integrated evaluation method established on the basis of Fuzzy mathematics and multivariate mathematical theory. Re...The impoverishment of soil nutrients of nine gully head areas in Yuanmou Basin is assessed through an integrated evaluation method established on the basis of Fuzzy mathematics and multivariate mathematical theory. Results show that soil erosion of gully erosion area in Yuanmou basin has resulted in severe impoverishment of soil nutrients. All gully head areas are at high leves of impoverishment except for one at middle. By probing into and analyzing the mechanism of impoverishment of soil nutrients, we find that soil erosion has led to impoverishment of soil nutrients in a way of compacting soil, heightening position of obstacle horizon, and reducing the content of organic matter, as well as the direct loss of nutrient elements. Finally, this paper points out that soil and water conservation arming at the prevention of soil erosion is the most effective way against impoverishment of soil nutrients in Yuanmou basin.展开更多
文摘Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.
文摘Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.
文摘Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivariate soil quality indice (SQI) models, such as additive quality index (AQI), weighted quality indexes (WQI<sub>add</sub> and WQI<sub>com</sub>) and Nemoro quality index (NQI), applied to two approaches of indicator selection: total data set (TDS) and minimum data set (MDS). Physical and chemical soil indicators were extracted from the ORSTOM’s reports resulting from a sampling campaign in different provinces of Gabon. The TDS approach shows soil quality status according to eleven soil indicators extracted from the analysis of 1,059 samples from arable soil layer (0 - 30 cm depth). The results indicated that 87% of all provinces presented a very low soil quality (Q5) whatever the model. Among soil indicators, exchangeable K<sup>+</sup> and Mg<sup>2+</sup>, bulk density and C/N ratio were retained in MDS, using principal component analysis (PCA). In the MDS approach, 50 to 63% of provinces had low soil quality grades with AQI, WQI<sub>add</sub> and NQI, whereas the total was observed with WQI<sub>com</sub>. Only 25% of provinces had medium soil quality grades with AQI and NQI models, while 12.5% (NQI) and 25% (AQI) presented high quality grades. Robust statistical analyses confirmed the accuracy and validation (0.80 r P ≤ 0.016) of AQI, WQI<sub>add</sub> and NQI into the TDS and MDS approaches. The same sensitivity index value (1.53) was obtained with AQI and WQI<sub>add</sub>. However, WQI<sub>add</sub> was chosen as the best SQI model, according to its high linear regression value (R<sup>2</sup> = 0.82) between TDS and MDS. This study has important implications in decision-making on monitoring, evaluation and sustainable management of Gabonese soils in a pedoclimatic context unfavorable to plant growth.
文摘The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.
文摘Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.
文摘Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary.
文摘Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. .
文摘This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols.
文摘Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites.
文摘A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.
基金Supported by National Natural Science Foundation of China(40761024)~~
文摘[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金Sponsored by National Natural Science Foundation of China(31360119,31460112)2015 Innovative Experimental Project for Students in Tibet Agriculture&Animal Husbandry University2015 Pilot Project of Excellent Agriculture and Forestry Talents Cultivation Program Reform
文摘Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg·hm^2·a^(-1), MN, 50 kg·hm^2·a^(-1); HN, 150 kg·hm^2·a^(-1)). NH_4NO_3 was used as nitrogen source to analyze the number of microorganisms in soil layers of 0–20 cm and 20–40 cm and explore the effect of different degrees of nitrogen deposition on soil microorganisms in grassland, woodland, and woodlandgrassland border. The results showed that: the number of bacteria in the grassland increased significantly under the treatment of LN, and the number of bacteria in the woodland-grassland border and woodland had a rising response under the influence of nitrogen deposition; the number of actinomycetes in the grassland increased in MN and HN treatment, and significantly increased in the border and woodland under LN treatment; the number of molds decreased sharply in the grassland, woodland, and woodland-grassland border.
基金financial supports are from the National Major Research Program of China (2013CB956702)the Natural Science Foundation of China (41273149, 41173129)+2 种基金the Science Foundation of Guizhou (20113109)the 100-Talent Program of CASthe opening project from the state key laboratory of environmental geochemistry
文摘Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon(TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, weconcluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO_3 precipitation.
文摘[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.
基金Project supportrd by the National Natural Science Foundation of China(No. 40231016, 40171052).
文摘Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied.
基金supported by the National Natural Science Foundation of China (41130530,91325301,41401237,41571212,41371224)the Jiangsu Province Science Foundation for Youths (BK20141053)the Field Frontier Program of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1624)
文摘Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.
基金the National Basic Research Program of China (973Program, 2006CB500401).
文摘Continuous observation data collected over the whole year of 2004 on a cropland surtace m Tongyu, a senti-arid area of northeastern China (44°25'N, 122°52'E), have been used to investigate the variations of surface albedo and soil thermal parameters, including heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture. The diurnal variation of surface albedo appears as a U shape curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is larger than 40°. So the daily average surface albedo was computed using the data when solar elevation angle is larger than 40° Mean daily surface albedo is found to decrease with the increase of soil moisture, showing an exponential dependence on soil moisture. The variations of soil heat capacity are small during Julian days 90 300. Compared with the heat capacity, soil thermal conductivity has very gentle variations during this period, but the soil thermal diffusivity has wide variations during the same period. The soil thermal conductivity is found to increase as a power function of soil moisture. The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.
基金supported by the Special Fund for Agroscientific Research in the Public Interest,China(201003016)the earmarked fund for China Agriculture Research System(CARS-01-31)the National Basic Research Program of China(2013CB127405)
文摘Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-SW-319)National Key Technologies Research and Development Program in the 10th Five Year Plan of China(2001BA606A-07).
文摘The impoverishment of soil nutrients of nine gully head areas in Yuanmou Basin is assessed through an integrated evaluation method established on the basis of Fuzzy mathematics and multivariate mathematical theory. Results show that soil erosion of gully erosion area in Yuanmou basin has resulted in severe impoverishment of soil nutrients. All gully head areas are at high leves of impoverishment except for one at middle. By probing into and analyzing the mechanism of impoverishment of soil nutrients, we find that soil erosion has led to impoverishment of soil nutrients in a way of compacting soil, heightening position of obstacle horizon, and reducing the content of organic matter, as well as the direct loss of nutrient elements. Finally, this paper points out that soil and water conservation arming at the prevention of soil erosion is the most effective way against impoverishment of soil nutrients in Yuanmou basin.