期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of discrete fibre reinforcement on soil tensile strength 被引量:10
1
作者 Jian Li Chaosheng Tang +2 位作者 Deying Wang Xiangjun Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期133-137,共5页
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities... The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix. 展开更多
关键词 Fibre reinforced soil tensile strength Direct tensile test Fibre contentDry density Water content
下载PDF
Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China 被引量:17
2
作者 ZHONG Rong-hua HE Xiu-bin +5 位作者 BAO Yu-hai TANG Qiang GAO Jin-zhang YAN Dan-dan WANG Ming-feng LI Yu 《Journal of Mountain Science》 SCIE CSCD 2016年第3期508-521,共14页
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank... Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(&gt;10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin. 展开更多
关键词 Bank stabilization Root area ratio Root tensile strength soil reinforcement Riparian zone Three Gorges Reservoir
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部