期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns and gravel lenses 被引量:2
1
作者 Hiruy ABDU David A.ROBINSON +1 位作者 Janis BOETTINGER Scott B.JONES 《Frontiers of Agricultural Science and Engineering》 2017年第2期135-145,共11页
Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties.Capturing field heterogeneity without exhaustive sampling an... Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties.Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Our objective was to employ electromagnetic induction(EMI) mapping in low apparent electrical conductivity(EC_a) soils at varying soil water contents to capture time invariant properties such as soil texture. Georeferenced EC_ameasurements were taken using a ground conductivity meter on six different days where volumetric water content(θ_v) varied from 0.11 to 0.23. The 50 m × 50 m field included a subsurface gravelly patch in an otherwise homogeneous silt-loam alluvial soil.Ordinary block kriging predicted EC_aat unsampled areas to produce 1-m resolution maps. Temporal stability analysis was used to divide the field into three distinct EC_a regions. Subsequent ground-truthing confirmed the lowest conductivity region correlated with coarse textured soil parent materials associated with a former high-energy alluvial depositional area. Combining maps using temporal stability analysis gives the clearest image of the textural difference. These maps could be informative for modeling,experimental design, sensor placement and targeted zone management strategies in soil science, ecology, hydrology,and agricultural applications. 展开更多
关键词 soil electrical conductivity soil texture mapping temporal stability analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部