期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Impact of aridization on soil cover transformation of the Aral Sea and the modern Syr-Darya Delta
1
作者 Tomina Tatyana KONSTANTINOVNA Azhikina Natalya ZHEKSEMBAEVNA 《Journal of Arid Land》 SCIE 2011年第2期150-154,共5页
The effects of human activities on the soil cover transformation in the eastern part of Kazakhstan were investigated during the period of 1956-2008.The results of the research for different soil types in Priaralye ind... The effects of human activities on the soil cover transformation in the eastern part of Kazakhstan were investigated during the period of 1956-2008.The results of the research for different soil types in Priaralye indicated that there was 643.3×103 hm2 solonchaks,accounting for 38.5 % of the total area(1670.5×10^3 hm^2) in 2008.Vast areas are occupied with dried lakeshore soil(311.1× 10^3 hm^2),sandy soils(147.6×10^3 hm^2) and grey-brown desert soils and solonetzes(146.7×10^3 hm^2).In 2001 the area of solonchak was 755×103 hm2 and decreased to 643.3×10^3 hm^2 in 2008,which due to the shrinkage of the Aral Sea,the areas of marsh and lakeshore solonchaks decreased with the increase of dried bottom of the Aral Sea.The level of soil cover transformation in the modern delta of the Syr-Darya River can be seen from the comparison of the results obtained from the different years in the study area.The area of solonchaks increased by 10×10^3 hm^2 and the area of alluvial-meadow salinizied soils increased by 17.9×10^3 hm^2 during the period of 1956-1969.It means that many non-salinizied soils were transformed into salinizied ones.Striking changes occurred in the structure of soil cover as a result of aridization.So,the researches in1969 significantly determined the areas of hydromorphic soils subjected to desertification(it was not fixed on the map before 1956).Later,these soils were transformed into takyr-like soils.The area of takyr-like soils increased almost by 3 times for 34 years(from 1956 to 1990).The long-term soil researches on soil cover transformation in Priaralye have shown that the tendencies of negative processes(salinization and deflation) are being kept and lead to further soil and eco-environment degradation in the region. 展开更多
关键词 soil transformation aridization Aral Sea Syr-Darya Delta
下载PDF
Carbon and Nitrogen Transformations in Surface Soils Under Ermans Birch and Dark Coniferous Forests 被引量:5
2
作者 DENG Xiao-Wen HAN Shi-Jie +1 位作者 HU Yan-Ling ZHOU Yu-Mei 《Pedosphere》 SCIE CAS CSCD 2009年第2期230-237,共8页
Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northe... Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northeast China, to compare soil carbon (C) and nitrogen (N) transformations in the two forests. The soil type is Umbri-Gelic Cambosols in Chinese Soil Taxonomy. Soil samples were incubated aerobically at 20℃ and field capacity of 700 g kg^-1 over a period of 27 weeks. The amount of soil microbial biomass and net N mineralization were higher in the Ermans birch than the dark coniferous forest (P 〈 0.05), whereas the cumulative C mineralization (as CO2 emission) in the dark coniferous forest exceeded that in the Ermans birch (P 〈 0.05). Release of the cumulative dissolved organic C and dissolved organic N were greater in the Ermans birch than the dark coniferous forest (P 〈 0.05). The results suggested that differences of forest types could result in considerable change in soil C and N transformations. 展开更多
关键词 dissolved organic C dissolved organic N Ermans birch-dark coniferous forest soil C transformation soil N transformation
下载PDF
Changes in Transformation of Soil Organic C and Functional Diversity of Soil Microbial Community Under Different Land Uses 被引量:22
3
作者 LI Zhong-pei WU Xiao-chen CHEN Bi-yun 《Agricultural Sciences in China》 CAS CSCD 2007年第10期1235-1245,共11页
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water... Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality. 展开更多
关键词 land use patterns transformation of soil organic carbon functional diversity of soil microbial community
下载PDF
Effects of six years of simulated N deposition on gross soil N transformation rates in an old-growth temperate forest 被引量:3
4
作者 Peng Tian Jinbo Zhang +2 位作者 Christoph Müller Zucong Cai Guangze Jin 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期644-653,共10页
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w... Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation. 展开更多
关键词 N deposition Gross soil N transformation Temperate forest ecosystem ^(15)N tracing technology
下载PDF
Influence of Phosphate on Transformation and Plant Uptake of Cadmium in Cd-amended Soils 被引量:1
5
作者 XIONGLI-MING LURU-KUN 《Pedosphere》 SCIE CAS CSCD 1991年第1期63-72,共10页
Phosphate was found to have neither influence on Cd transformation nor effect on plant Cd uptake in three Cd-amended upland soils.However,on submerged red earth,high phosphate dressing inhibited the transformation of ... Phosphate was found to have neither influence on Cd transformation nor effect on plant Cd uptake in three Cd-amended upland soils.However,on submerged red earth,high phosphate dressing inhibited the transformation of Cd from exchangeable fraction to other lower-available ones.Cadmium uptake by rice plants increased simultaneously with increasing phosphate supply though plant resistance to Cd also increased at high phosphate level.Application of phosphate as an amendment for Cd-contaminated soil was therefore not recommended in view of the increasing influx of Cd into food chain especially on flooded soils. 展开更多
关键词 CADMIUM PHOSPHATE plant uptake soil pollution.transformation
下载PDF
Soil and microbial C:N:P stoichiometries play vital roles in regulating P transformation in agricultural ecosystems:A review
6
作者 Guanglei CHEN Jiahui YUAN +4 位作者 Shenqiang WANG Yuting LIANG Dengjun WANG Yiyong ZHU Yu WANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期44-51,共8页
Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to ach... Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to achieve high crop yields. However, P is readily fixed by soil particles, leading to low P use efficiency. Therefore, understanding the role of carbon:nitrogen:P stoichiometries of soil and microorganisms in soil P transformation is of great significance for P management in agriculture. This paper provides a comprehensive review of the recent research on stoichiometry effect on soil P transformation in agricultural ecosystems. Soil microorganisms play an important role in the transformation of soil non-labile inorganic P to microbial biomass P by regulating microbial biomass stoichiometry. They also mobilize soil unavailable organic P into available P by changing ecoenzyme stoichiometry. Organic materials, such as manure and straw, play an important role in promoting the transformation of insoluble P into available P as well. Additionally, periphytic biofilms can reduce P loss from rice field ecosystems. Agricultural stoichiometries are different from those of natural ecosystems and thereby should receive more attention due to the influences of anthropogenic factors. Therefore, it is necessary to conduct further stoichiometry research on the soil biochemical mechanisms underlying P transformation in agricultural ecosystems. In conclusion, understanding stoichiometry impact on soil P transformation is crucial for P management in agricultural ecosystems. 展开更多
关键词 ecoenzyme microbial biomass microbial community MICROORGANISM P availability periphytic biofilm soil P transformation
原文传递
Reasonable selection of yield criteria for quantitative analysis of unsaturated soil slope stability 被引量:2
7
作者 LIU Zi-zhen YAN Zhi-xin +2 位作者 REN Zhi-hua QIU Zhan-hong DUAN Jian 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1304-1312,共9页
The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(... The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall. 展开更多
关键词 Unsaturated soil slope Yield criteria Parameter transformation Rainfall Safety factor
下载PDF
Effect of orchard age on soil nitrogen transformation in subtropical China and implications 被引量:4
8
作者 Yushu Zhang Jinbo Zhang +2 位作者 Tongbin Zhu Christoph Müller Zucong Cai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期10-19,共10页
A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to... A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil p H along with increasing orchard age significantly. The amo A gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity(defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3-consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3-loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age. 展开更多
关键词 15N tracing technique Gross rates of nitrogen transformation Subtropical orchard soil
原文传递
Biochemical and microbial soil functioning after application of the insecticide imidacloprid 被引量:3
9
作者 Mariusz Cycoń Zofia Piotrowska-Seget 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期147-158,共12页
Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the... Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate(FR, 1 mg/kg soil) and 10 times the FR(10 × FR, 10 mg/kg soil)may also have an impact on biochemical and microbial soil functioning. The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration(SIR), the number of total bacteria, dehydrogenase(DHA), both phosphatases(PHOS-H and PHOS-OH), and urease(URE) at the beginning of the experiment. In 10 × FR treated soil, decreased activity of SIR, DHA, PHOS-OH and PHOS-H was observed over the experimental period. Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid. The concentration of NO3-decreased in both imidacloprid-treated soils,whereas the concentration of NH4+in soil with 10 × FR was higher than in the control.Analysis of the bacterial growth strategy revealed that imidacloprid affected the r- or K-type bacterial classes as indicated also by the decreased eco-physiological(EP) index.Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth. Principal component analysis showed that imidacloprid application significantly shifted the measured parameters, and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils. 展开更多
关键词 Imidacloprid Enzyme activities Nitrogen transformation Physiological state soil microorganisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部