In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the por...In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the porosity/volumetric lime content ratio(η/Liv)as the main parameter.η/Liv represents the volume of void influenced by compaction effort and lime volume.The evolution of qu was analyzed for each soil using the coefficient of determination as the optimization parameter.Aiming at providing adjustments to the mechanical resistance values,the η/Liv parameter was modified to η/LivC using the adjustment exponent C(to make qu-η/Liv variation rates compatible).The results show that with the decrease of η/LivC.qu increases potentially and the optimized values of C were 0.14-0.18.The mechanical resistance data show similar trends between qu and η/LivC for the studied silty soil-ground lime mixtures,which were cured at ambient temperature(23±2)℃ with different curing times of 28-360 d.Finally,optimized equations were presented using the normalized strengths and the proposed optimization model,which show 6% error and 95% acceptability on average.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a struc...<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a structure represents the essential structural part of it, because it ensures its bearing capacity. Among the types of foundation, </span><span style="font-family:Verdana;">deep</span><span style="font-family:Verdana;"> foundation is the one for which from a mechanical point of view, the justification takes into account the isolated or combined effects of base resistance offered by the soil bed and lateral friction at the soil-pile interface;the latter being the consequence of a large contact surface with the surrounding soil;hence the need to study the interaction between the soil and the pile in service, in order to highlight the characteristics of soil which influence the mechanical behavior of pile and therefore the stability of the structure. In this study,</span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the reinforced concrete pile is supposed to be </span><span style="font-family:Verdana;">elastic,</span><span style="font-family:Verdana;"> and characterized by a young’s modulus (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) and a Poisson’s ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">ν</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). The soil obeys to a Camclay model characterized by </span><span style="font-family:Verdana;">a cohesion</span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">c</span></i><span style="font-family:Verdana;">), an initial voids ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">e</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">), shearing resistance angle (</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">φ</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> a pre-consolidation pressure (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">P</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). A joint model with a </span><span style="font-family:Verdana;">Mohr Coulomb</span><span style="font-family:Verdana;"> behavior characterizes the soil-pile interface. The loading is carrying out by imposing a vertical monotonic displacement at the head of </span><span style="font-family:Verdana;">pile</span><span style="font-family:Verdana;">. The results in terms of stress and displacement show that the bearing capacity of the pile is influenced by various soils characteristics, it appears that the vertical stress and the force mobilized at rupture increase when the initial pre_consolidation pressure, the cohesion </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the internal friction angle of soil increase;and when the initial soil voids index decreases.</span></span></span></span>展开更多
基金the Federal University of Technology-Parana, to the CAPES, CNPqFundacao Araucaria do Parana in Brazil for financial support
文摘In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the porosity/volumetric lime content ratio(η/Liv)as the main parameter.η/Liv represents the volume of void influenced by compaction effort and lime volume.The evolution of qu was analyzed for each soil using the coefficient of determination as the optimization parameter.Aiming at providing adjustments to the mechanical resistance values,the η/Liv parameter was modified to η/LivC using the adjustment exponent C(to make qu-η/Liv variation rates compatible).The results show that with the decrease of η/LivC.qu increases potentially and the optimized values of C were 0.14-0.18.The mechanical resistance data show similar trends between qu and η/LivC for the studied silty soil-ground lime mixtures,which were cured at ambient temperature(23±2)℃ with different curing times of 28-360 d.Finally,optimized equations were presented using the normalized strengths and the proposed optimization model,which show 6% error and 95% acceptability on average.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
文摘<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a structure represents the essential structural part of it, because it ensures its bearing capacity. Among the types of foundation, </span><span style="font-family:Verdana;">deep</span><span style="font-family:Verdana;"> foundation is the one for which from a mechanical point of view, the justification takes into account the isolated or combined effects of base resistance offered by the soil bed and lateral friction at the soil-pile interface;the latter being the consequence of a large contact surface with the surrounding soil;hence the need to study the interaction between the soil and the pile in service, in order to highlight the characteristics of soil which influence the mechanical behavior of pile and therefore the stability of the structure. In this study,</span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the reinforced concrete pile is supposed to be </span><span style="font-family:Verdana;">elastic,</span><span style="font-family:Verdana;"> and characterized by a young’s modulus (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) and a Poisson’s ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">ν</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). The soil obeys to a Camclay model characterized by </span><span style="font-family:Verdana;">a cohesion</span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">c</span></i><span style="font-family:Verdana;">), an initial voids ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">e</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">), shearing resistance angle (</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">φ</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> a pre-consolidation pressure (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">P</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). A joint model with a </span><span style="font-family:Verdana;">Mohr Coulomb</span><span style="font-family:Verdana;"> behavior characterizes the soil-pile interface. The loading is carrying out by imposing a vertical monotonic displacement at the head of </span><span style="font-family:Verdana;">pile</span><span style="font-family:Verdana;">. The results in terms of stress and displacement show that the bearing capacity of the pile is influenced by various soils characteristics, it appears that the vertical stress and the force mobilized at rupture increase when the initial pre_consolidation pressure, the cohesion </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the internal friction angle of soil increase;and when the initial soil voids index decreases.</span></span></span></span>