期刊文献+
共找到27,966篇文章
< 1 2 250 >
每页显示 20 50 100
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
1
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH soil water potential Irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Plastic mulch increases dryland wheat yield and water-use productivity,while straw mulch increases soil water storage
2
作者 Hubing Zhao Guanfei Liu +5 位作者 Yingxia Dou Huimin Yang Tao Wang Zhaohui Wang Sukhdev Malhi Adnan Anwar Khan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3174-3185,共12页
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa... Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage. 展开更多
关键词 plastic mulch soil water storage straw mulch water-use productivity winter wheat
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
3
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
4
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline water soil Acidity soil Alkalinity
下载PDF
AHFO-based soil water content sensing technology considering soil-sensor thermal contact resistance
5
作者 Mengya Sun Peng Wu +6 位作者 Bin Shi Jin Liu Jie Liu Juncheng Yao Yipin Lu Yunqiang Wang Xiaoyan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2715-2731,共17页
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio... The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology. 展开更多
关键词 soil water content Actively heated fiber-optic(AHFO) technology soilesensor thermal contact resistance RELIABILITY In situ application
下载PDF
Current Status and Challenges of the Water and Soil Conservation in Hotan County, Xinjiang
6
作者 Junhui WANG Lei ZHANG 《Meteorological and Environmental Research》 2024年第3期72-76,共5页
In order to thoroughly analyze the current status and challenges faced by the water and water conservation in Hotan County of Xinjiang,the use situation of water resources,the effectiveness and shortcomings of water a... In order to thoroughly analyze the current status and challenges faced by the water and water conservation in Hotan County of Xinjiang,the use situation of water resources,the effectiveness and shortcomings of water and soil conservation work in the region are reviewed.Hotan County has achieved several remarkable achievements in the soil and water conservation project,daily management and maintenance,and ecological restoration projects.Some measures,such as terrace construction,slope protection engineering,and the construction of windproof and sandwood belts,have also had a positive impact on improving the quality of surface water resources while effectively curbing soil erosion.But there are also lack of operating policy detailed rules and implementation plans,and planning and design of some water and soil conservation projects lack of integrity and systematicness,application and promotion of new technologies,and soil loss management and ecological recovery effect assessment lack of comprehensive assessment indicators and methods.It has caused some water and soil conservation works to fail to be effectively implemented.In this regard,countermeasures and suggestions are put forward,such as strengthening the planning and management of water and soil conservation,promoting the technology and measures of water and soil conservation,increasing investment and funding support,and strengthening publicity education and personnel training. 展开更多
关键词 Hotan County water and soil conservation STATUS CHALLENGE
下载PDF
Effects of Typical Soil and Stratification Thickness on Water Infiltration Characteristics in Central Ningxia
7
作者 Tianwen ZHANG Wei CHEN +4 位作者 Xiaoying CHEN Rongjun ZHI Lin CHEN Haibo ZHANG Wei LIANG 《Meteorological and Environmental Research》 2024年第4期58-65,共8页
In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltrati... In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure. 展开更多
关键词 soil type Layer thickness water infiltration Desert steppe
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
8
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors soil Moisture Conditions soil water Characteristic Curves Specific water Capacity Wetting-Drying Cycles
下载PDF
Rapid testing and prediction of soil–water characteristic curve of subgrade soils considering stress state and degree of compaction 被引量:2
9
作者 Junhui Peng Huiren Hu Junhui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3305-3315,共11页
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve... The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC. 展开更多
关键词 Subgrade soil soilwater characteristic curve(SWCC) Overburden stress Degree of compaction Prediction mode
下载PDF
Effects of long-term grazing exclusion on vegetation structure,soil water holding capacity,carbon and nitrogen sequestration capacity in an alpine meadow on the Tibetan Plateau 被引量:2
10
作者 YANG Yong-sheng ZHANG Fa-wei +5 位作者 XIE Xian-rong WANG Jun-bang LI Ying-nian HUANG Xiao-tao LI Hui-ting ZHOU Hua-kun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期779-791,共13页
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d... Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion. 展开更多
关键词 Long-term grazing exclusion soil water holdingcapacity soilcarbonand nitrogen sequestration BIOMASS Alpine meadow
下载PDF
Evaluating the Effects of Sustainable Chemical and Organic Fertilizers with Water Saving Practice on Corn Production and Soil Characteristics 被引量:1
11
作者 Xuejun Zhang Muhammad Amjad Bashir +8 位作者 Qurat-Ul-Ain Raza Xiaotong Liu Jianhang Luo Ying Zhao Qiuliang Lei Hafiz Muhammad Ali Raza Abdur Rehim Yucong Geng Hongbin Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第5期1349-1360,共12页
The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resultin... The rapidly growing world population,water shortage,and food security are promising problems for sustainable agriculture.Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution.This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status.A series of field experiments were conducted for six years with treatments as:farmer accustomed to fertilization used as control(CON),fertilizer decrement(KF),fertilizer decrement+watersaving irrigation(BMP1);combined application of organic and inorganic fertilizer+water-saving irrigation(BMP2),and combined application of controlled-release fertilizer(BMP3).A significant improvement was observed in soil organic matter(14.9%),nitrate nitrogen(106.7%),total phosphorus(23.9%),available phosphorus(26.2%),straw yield(44.8%),and grain yield(54.7%)with BMP2 treatment as compared to CON.The study concludes that integrating chemical and organic fertilizers with water-saving irrigation(BMP2)is a good approach to increasing corn productivity,ensuring water safety and improving soil health.The limitations of the current study include the identification of fertilizer type and its optimum dose,irrigation water type,and geographical position. 展开更多
关键词 Chemical fertilizer soil quality sustainable agriculture water management
下载PDF
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
12
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 soil and water stability Expansive soil slope Polymer waterproof coating Model test soil erosion
下载PDF
Influence law of modified glutinous rice-based materials on gravel soil reinforcement and water erosion process
13
作者 ZHANG Weng-xiang PEI Xiang-jun +4 位作者 ZHANG Xiao-chao WU Xue-min XIAO Wei-yang QIN Liang ZHU Jin-yu 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3552-3567,共16页
A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration o... A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect. 展开更多
关键词 Modified glutinous rice substrate Gravel soil soil reconstruction Trauma repair water erosion
下载PDF
Combination of effective color information and machine learning for rapid prediction of soil water content
14
作者 Guanshi Liu Shengkui Tian +2 位作者 Guofang Xu Chengcheng Zhang Mingxuan Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2441-2457,共17页
Soil water content(SWC)is one of the critical indicators in various fields such as geotechnical engineering and agriculture.To avoid the time-consuming,destructive,and laborious drawbacks of conventional SWC measureme... Soil water content(SWC)is one of the critical indicators in various fields such as geotechnical engineering and agriculture.To avoid the time-consuming,destructive,and laborious drawbacks of conventional SWC measurements,the image-based SWC prediction is considered based on recent advances in quantitative soil color analysis.In this study,a promising method based on the Gaussian-fitting gray histogram is proposed for extracting characteristic parameters by analyzing soil images,aiming to alleviate the interference of complex surface conditions with color information extraction.In addition,an identity matrix consisting of 32 characteristic parameters from eight color spaces is constituted to describe the multi-dimensional information of the soil images.Meanwhile,a subset of 10 parameters is identified through three variable analytical methods.Then,four machine learning models for SWC prediction based on partial least squares regression(PLSR),random forest(RF),support vector machines regression(SVMR),and Gaussian process regression(GPR),are established using 32 and 10 characteristic parameters,and their performance is compared.The results show that the characteristic parameters obtained by Gaussian-fitting can effectively reduce the interference from soil surface conditions.The RGB,CIEXYZ,and CIELCH color spaces and lightness parameters,as the inputs,are more suitable for the SWC prediction models.Furthermore,it is found that 10 parameters could also serve as optimal and generalizable predictors without considerably reducing prediction accuracy,and the GPR model has the best prediction performance(R^(2)≥0.95,RMSE≤2.01%,RPD≥4.95,and RPIQ≥6.37).The proposed image-based SWC predictive models combined with effective color information and machine learning can achieve a transient and highly precise SWC prediction,providing valuable insights for mapping soil moisture fields. 展开更多
关键词 soil water content(SWC) Digital image soil color Color space Machine learning
下载PDF
Soil water content and nitrogen differentially correlate with multidimensional leaf traits of two temperate broadleaf species
15
作者 Ming-Yue Jin Daniel J.Johnson +2 位作者 Guang-Ze Jin Qing-Xi Guo Zhi-Li Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第6期694-701,共8页
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ... The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes. 展开更多
关键词 Leaf trait multidimensionality Economics traits Vein traits soil water content soil total nitrogen Shade tolerance
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
16
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and water Conservation Regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Effects of water and salt for groundwater-soil systems on root growth and architecture of Tamarix chinensis in the Yellow River Delta,China
17
作者 Jia Sun Ximei Zhao +3 位作者 Ying Fang Fanglei Gao Chunhong Wu Jiangbao Xia 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期441-452,共12页
To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch... To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system. 展开更多
关键词 GROUNDwater SALINITY soil water and salt Root system Tamarix chinensis Topological structure
下载PDF
Types of Irrigation Water and Soil Amendment Affect the Growth and Flowering of Petunia x alkinsiana ‘Bravo Pinc’
18
作者 Abdullah M.Algahtani Fahed A.Al-Mana Khalid M.Elhindi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第2期487-499,共13页
Water insufficiency is the hampering feature of crop sustainability,especially in arid and semi-arid regions.So,the effectual usage of all water resources especially underground brackish water represents the core prio... Water insufficiency is the hampering feature of crop sustainability,especially in arid and semi-arid regions.So,the effectual usage of all water resources especially underground brackish water represents the core priority in Saudi Arabia.The present study aimed to recognize the influence of different types of water irrigation(tap water as a control,salinized well water,and magnetized salinized well water)with or without soil amendments(soil without any amendment as a control,peat-moss,ferrous sulfate,and peat-moss plus ferrous sulfate)on petunia plant growth and flowering as well as ion content.Irrigating Petunia plants with saline well water adversely affected growth and flowering as compared to tap water and magnetized saline well water.Additionally,plants irrigated with magnetized water showed a significant enhancement in all the studied vegetative and flowering growth parameters as compared to those irrigated with salinized well water.Furthermore,mineral contents and survival of Petunia plants irrigated with magnetized well water were higher than those irrigated with tap water.Irrigation with magnetized well water significantly reduced levels of Na+and Cl−ions in leaves of Petunia plants indicating the role of magnetization in alleviating harmful effects of salinity.In conclusion,we recommend the utilization of magnetized saline well water for irrigating Petunia plants either alone or in combination with soil amendments(peat moss plus ferrous sulfate). 展开更多
关键词 FLOWERING MAGNETIZATION PETUNIA saline water soil amendment
下载PDF
SimET: An open-source tool for estimating crop evapotranspiration and soil water balance for plants with multiple growth cycles
19
作者 Minguo Liu Mei Yang Huimin Yang 《The Crop Journal》 SCIE CSCD 2023年第5期1579-1585,共7页
Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many de... Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many deficiencies, including complex operation, limited scalability, lack of batch processing, and a single ETc model. Here we present simET, an open-source software package written in the R programming language. Many concepts involved in crop ETc simulation are condensed into functions in the package. It includes three widely used crop ETc models built on these functions: the single-crop coefficient,double-crop coefficient, and Shuttleworth–Wallace models, along with tools for preparing model data and comparing estimates. SimET supports ETc simulation in crops with repeated growth cycles such as alfalfa, a perennial forage crop that is cut multiple times annually. 展开更多
关键词 Crop evapotranspiration soil water balance Evapotranspiration model R package
下载PDF
Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China
20
作者 YANG Xinguo WANG Entian +1 位作者 QU Wenjie WANG Lei 《Journal of Arid Land》 SCIE CSCD 2023年第1期63-76,共14页
Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological s... Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological soil crusts)cover in desert steppe in Northwest China to characterize the water sources of shrub(Caragana intermedia Kuang et H.C.Fu)and grass(Artemisia scoparia Waldst.et Kit.)by stable 18O isotopic.Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017,the minimum soil depth with CV(coefficient of variation)<15% and SWC(soil water content)<6% was 1.4 m in shrubland with open areas lacking obvious BSC cover,and 0.8 m in shrubland covered by mature BSCs.For C.intermedia,a considerable proportion of water sources pointed to the surface soil.Water from BSCs contributed to averages 22.9%and 17.6%of the total for C.intermedia and A.scoparia,respectively.C.intermedia might use more water from BSCs in rainy season than dry season,in contrast to A.scoparia.The relationship between shrub(or grass)and soil water by δ^(18)O shown significant differences in months,which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale.More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs(8000 cm/m^(3))than without BSCs(3200 cm/m^(3)),which ensured the possibility of using the surface soil water by C.intermedia.The result implies that even under serious soil water deficiency,C.intermedia can use the surface soil water,leading to the coexistence between C.intermedia and A.scoparia.Different with the result from BSCs in desert areas,the natural withdrawal of artificial C.intermedia from desert steppe will be a long-term process,and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time. 展开更多
关键词 desert steppe biological soil crusts water resource Caragana intermedia Artemisia scoparia
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部