期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:25
1
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
Soil water deficit and vegetation restoration in the refuse dumps of the Heidaigou open-pit coal mine,Inner Mongolia,China 被引量:5
2
作者 Lei Huang 《Research in Cold and Arid Regions》 CSCD 2016年第1期22-35,共14页
The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experi... The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experiments in the northern refuse dump of the Heidaigou open-pit coal mine in Inner Mongolia of China established in 1995. Eight plant configurations, including trees, shrubs, grasses, and their combinations, as well as the adjacent community of natural vegetation, were selected. The succession of the revegetated plants, soil water storage, the spatiotemporal distribution of plant water deficits degree and its compensation degree were also studied. Results indicated that the vegetation cover (shrubs and herbaceous cover), richness, abundance, soil nutrients (soil organic matter, N and P), and biological soil crust coverage on the soil surface are significantly influenced by the vegetation configurations. The average soil water storage values in the shrub + grass and grass communities throughout the growing season are 208.69 mm and 206.55 mm, which are the closest to that of in the natural vegetation community (215.87 mm). Plant water deficits degree in the grass and shrub + grass communities were the lowest, but the degrees of water deficit compensation in these configuration were larger than those of the other vegetation configurations. Differences in plant water deficit degree and water compensation among the different config- urations were significant (P 〈0.05). Plant water deficit degrees were predominantly minimal on the surface, increased with increasing soil depth, and remained stable at 80 cm soil depth. The soil moisture compensation in the natural vegetation, shrub + grass, and grass communities changed at 10%, while that in other vegetation communities changed between 20% and 40%. Overall, we conclude that the shrub + grass and grass configuration modes are the optimal vegetation restoration models in terms of ecohydrology for future ecological engineering projects. 展开更多
关键词 refuse dumps soil water storage plant water deficit degree plant water compensation degree vegetation configurations
下载PDF
Influence of Soil Water Deficit and Phosphorus Application on Phosphorus Uptake and Yield of Soybean (<i>Glycine max</i>L.) at Dejen, North-West Ethiopia 被引量:3
3
作者 Merkebu Getachew 《American Journal of Plant Sciences》 2014年第13期1889-1906,共18页
A green house experiment was conducted at Dejen, Northwest Ethiopia, with the objective of quantifying the critical soil water deficit and P levels that affect yield and yield components of soybean, and determine the ... A green house experiment was conducted at Dejen, Northwest Ethiopia, with the objective of quantifying the critical soil water deficit and P levels that affect yield and yield components of soybean, and determine the critical soil water deficit levels influencing P uptake in soybean. The treatment consisted of factorial combination of four available soil water (ASW) deficit levels (0%, 25%, 50% and 75%) and four levels of phosphorus (0, 10, 20, and 30 kg·ha-1) laid out in RCBD with four replications using soy bean variety Jalale as a planting material. The experiment was conducted under green house condition at Dejen, South Ethiopia during the 2011 academic year. Air dried soil was filled in the pots and seeds were sown on May 13, 2011. Four plants were maintained on each pot after thinning till flowering but after flowering, the total number of plants per pot was reduced to three as one plant which was used for measurement of root biomass. The water deficit treatments were imposed after the plants have been fully established 2 weeks after emergence just before branching stage. The water deficiency was imposed through maintaining the soil moisture content below field capacity at the deficit levels of 25%, 50% and 75%. The 75% of ASW deficit resulted in the longest days (45) to flowering and maturity (99) compared to the 0%, 25% and 50% deficit levels. Also, the 75% of ASW deficit level resulted in shorter plants (55 cm), the lowest leaf area (82.6 cm2), the highest root to shoot ratio (0.0168) and the lowest DM accumulation (161.3 gm-2) compared to the other ASW deficit levels. Likewise, the 75% of ASW deficit level gave the lowest number of pods per plant (4.13), seeds per pod (1.69), 100 seed weight (2.54 g), seed yield (13.4 g·m-1), above ground biomass (174.6 g·plant-1) and harvest index (0.08) compared to the other ASW deficit treatments. The degree of sensitivity to drought increased dramatically (from 0.0423 at 25% to 0.9604 at 75%) with increase in water deficit level. Tissue analysis results indicated that the highest seed P concentration (1.285%) and uptake (432.5 g·plant-1) were obtained at the 0 ASW deficit and 30 kg·P·ha-1 and the lowest were obtained at 75% ASW deficit and all rate of applied P. On the contrary, the highest straw P concentration (1.88%) and uptake (552.7 g·plant-1) were recorded at 75% and 25% of ASW deficit levels and 30 kg·P·ha-1, respectively. However, the total P uptake was influenced only by ASW deficit levels in that the relatively minimum and maximum values were observed at 75% and 0% of ASW deficit levels, respectively. It can be concluded that the critical ASW deficit levels that affect yield and yield components of soybean and uptake of total P lie between 25% and 50% of available water deficit levels. The parameters started to decline significantly from the 50% of ASW deficit onwards. As it is a green house experiment, further study on more number of ASW deficit levels and soil types under different field conditions needs to be done to reach at a conclusive recommendation. 展开更多
关键词 Phosphorus UPTAKE SOYBEAN soil water deficit
下载PDF
Study on the Soil Moisture Stress Level in Regulated Deficit Irrigation Experiment 被引量:24
4
作者 柴红敏 张巍巍 蔡焕杰 《Agricultural Science & Technology》 CAS 2009年第2期154-156,共3页
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu... On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture. 展开更多
关键词 Regulated deficit irrigation soil moisture availability soil water suction soil moisture characteristic curve soil moisture stress level
下载PDF
Response of forestland soil water content to heavy rainfall on Beijing Mountain, northern China 被引量:2
5
作者 Jianbo Jia Xinxiao Yu Yitao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期541-550,共10页
Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced his... Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21-22 July, 2012, Beijing experienced historic rainfall that totaled 164.4 mm. We used large lysimeter technology in four forested plots to record precipitation and variation in SWC at 10-min intervals to quantify the response of forestland SWC to heavy rainfall in a semi-arid area. Mean,maximum and minimum rainfall intensities were 23.4, 46.8and 12.0 mm/h, respectively. Rainfall was concentrated in 2-6 mm bursts that accounted for 67.32 % of the total rainfall event. Soil moisture conditions in this region are strongly dependent on patterns of precipitation. Water infiltration into 20, 40, 60, 80, 100, 120 and 160 cm soil layers required 1, 5,20, 37, 46, 52 and 61 mm of precipitation, respectively, and to fully saturate these soil layers required 80, 120, 140, 150, 180,200 and 220 mm of precipitation, respectively. 展开更多
关键词 Semi-arid region soil water content soilwater deficit LYSIMETER
下载PDF
Status and circulation characteristics of soil water in dryland field of southeast Shanxi Province
6
作者 Zhong Zhao zhan, Zhao Ju bao, Mei Xu rong Institute of Agrometeorology, Chinese Academy of Agricultural Sciences, Beijing 100081, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第4期27-34,共8页
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w... Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China. 展开更多
关键词 soil water field water deficit crop utilization ability to soil water dry land southeast of Shanxi Province.
下载PDF
Quantifying the impacts of soil water stress on the winter wheat growth in an arid region,Xinjiang
7
作者 Yilihm.Yimam 《Journal of Arid Land》 SCIE 2009年第1期34-42,共9页
Wheat growth in response to soil water deficit play an important role in yield stability. A field experiment was conducted for winter wheat (Triticum aestivum L.) during the period of 2002-2005 to evaluate the effects... Wheat growth in response to soil water deficit play an important role in yield stability. A field experiment was conducted for winter wheat (Triticum aestivum L.) during the period of 2002-2005 to evaluate the effects of limited irrigation on winter wheat growth. 80%, 70%, 60%, 50% and 40% of field capacity was applied at different stages of crop growth. Photosynthetic characteristics of winter wheat, such as photosynthesis rate, transpiration rate, stomatal conductance, photosynthetically active radiation, and soil water content, root and shoot dry mass accumulation were measured, and the root water uptake and water balance in different layer were calculated. Based on the theory of unsaturated dynamic, a one-dimensional numerical model was developed to simulate the effect of soil water movement on winter wheat growth using Hydrus-1 D. The soil water content of stratified soil in the experimental plot was calculated under deficit irrigation. The results showed that, in different growing periods, evapotranspiration, grain yield, biomass, root water uptake, water use efficiency, and photosynthetic characteristics depended on the controlled ranges of soil water content. Grain yield response to irrigation varied considerably due to differences in soil moisture contents and irrigation scheduling between seasons. Evapotranspiration was largest in the high soil moisture treatment, and so was the biomass, but this treatment did not produce the highest grain yield and root water uptake was relatively low. Maximum depth of root water uptake is from the upper 80 cm in soil profile in jointing stage and dropped rapidly upper 40 cm after heading stage, and the velocity of root water uptake in latter stage was less than that in middle stage. The effect of limited irrigation treatment on photosynthesis was complex owing to microclimate. But root water uptake increased linearly with harvest yield and improvement in the latter gave better root water uptake under limited irrigation conditions. Appropriately controlled soil water contents can improve the root water uptake and grain yield. Consistently high values of root water uptake and grain yield were produced under conditions of mild water deficit at the seedling and start of regrowth to stem-elongation stages, in addition to a further soil water depletion at the physiological maturity to harvest stage. We suggest that periods of mild soil water depletion in the early vegetative growth period together with severe soil water depletion in the maturity stage of winter wheat is an optimum for limited irrigation regime in this oasis. Considerable potential for further improvement in agricultural water use efficiency in the arid zone depends on effective conservation of moisture and efficient use of the limited water. 展开更多
关键词 soil water water stress deficit irrigation numerical simulation PHOTOSYNTHESIS arid region
下载PDF
Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture
8
作者 HUANG Laiming ZHAO Wen SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2021年第7期688-698,共11页
Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response... Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions. 展开更多
关键词 plant available soil water content drought stress soil water deficit sustainable vegetation restoration sandy soil loamy soil Loess Plateau
下载PDF
Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa 被引量:10
9
作者 Ying Lang Ming Wang +1 位作者 Jiangbao Xia Qiankun Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期45-53,共9页
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ... To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa. 展开更多
关键词 Chlorophyll fluorescence Gas exchange Photosynthetic rate soil water deficit Stomatal mechanism water-use efficiency
下载PDF
Transpiration and growth responses by Eucalyptus species to progressive soil drying 被引量:1
10
作者 Marcel Carvalho Abreu Alvaro Augusto Vieira Soares +1 位作者 Cleverson Henrique de Freitas Fabrina Bolzan Martins 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1529-1543,共15页
The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, fe... The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves. 展开更多
关键词 soil water deficit Fraction of transpirable soil water TRANSPIRATION Seedling growth Vapor pressure deficit
下载PDF
Study on the Characteristics of Soil Moisture of Artificial Robinia pseudoacacia Forest Land in Different Latitudinal Zones of Northern Shaanxi
11
作者 Yu ZHENG Xia ZHANG +1 位作者 Xiangwen XIN Sha XUE 《Asian Agricultural Research》 2014年第5期69-73,78,共6页
This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and i... This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and impact factor of Robinia pseudoacacia in this area,and variation characteristics of soil moisture in the Loess Plateau region. The results show that soil moisture content decreases with increase of soil depth, and in 40- 50 cm depth the jump point of moisture reduction appears significantly. Soil moisture was lower than the growth critical moisture in 5 samples to the north of Chunhua,and has different degrees of deficit. Soil moisture deficit degree was more than 50% in sandy loam and light loam soils such as Yulin,Shenmu and Suide. With the increasing of latitude,both of soil accumulative storage and net rainfall tends to decrease,but the relationship between them is significant correlation,indicating that that climate conditions are the major factors causing significant difference of soil moisture. 展开更多
关键词 Robinia PSEUDOACACIA soil MOISTURE soil water stor
下载PDF
宁南黄土区不同人工植被类型深层土壤水分亏缺评价
12
作者 王月玲 许浩 +4 位作者 安钰 万海霞 董立国 韩新生 袁心 《甘肃农业大学学报》 CAS CSCD 北大核心 2024年第2期215-223,共9页
【目的】开展评估不同人工植被类型深层土壤水分亏缺程度,能为区域科学合理实施植被恢复策略提供理论依据。【方法】以宁夏彭阳中庄小流域5种不同植被类型(山桃林、沙棘林、柠条林、苜蓿地,农田为对照)为研究对象,采用土壤水分相对亏缺... 【目的】开展评估不同人工植被类型深层土壤水分亏缺程度,能为区域科学合理实施植被恢复策略提供理论依据。【方法】以宁夏彭阳中庄小流域5种不同植被类型(山桃林、沙棘林、柠条林、苜蓿地,农田为对照)为研究对象,采用土壤水分相对亏缺指数(CSWDI)和干燥化指数(SDI)定量评价模型,对不同植被类型下0~1 000 cm土壤水分亏缺及干燥化程度进行定量化分析与评价。【结果】不同植被类型深层土壤水分变化特征差异明显,0~1 000 cm平均土壤水分含量呈现出农地(16.29%)>山桃林(13.06%)>沙棘林(12.22%)>柠条林(9.12%)>苜蓿地(8.08%)。在垂直剖面上,土壤水分随土层深度增加总体呈现先减小后增加再逐渐稳定的趋势。在0~1 000 cm农地基本没有水分亏缺和干层发生,山桃林、柠条林、沙棘林和苜蓿地均呈现不同程度的土壤水分亏缺现象,平均土壤水分相对亏缺指数分别为0、0.22、0.62、0.35、0.79,平均土壤干燥化指数分别为185.5%、67.45%、51.55%、87.35%、36.10%,5种植被类型中苜蓿地土壤水分亏缺最严重,其次为柠条林、沙棘林、山桃林、农地。山桃林、柠条林、沙棘林、苜蓿地均有不同程度的干层分布,分别呈现中度、轻度和严重干燥化,干层厚度(DSLT)分别为890、860、800、920 cm,DSL-SWC分别为12.42%、8.14%、11.56%、7.76%。【结论】宁南黄土区不同人工植被类型对深层土壤水分亏缺具有明显影响,导致不同程度土壤干层发生,其中苜蓿地土壤水分亏缺最严重,应采取相应措施恢复土壤水分,促进区域水土资源可持续利用和生态健康发展。 展开更多
关键词 植被类型 土壤水分 水分亏缺 宁南黄土区
下载PDF
荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素
13
作者 赵亚楠 王红梅 +3 位作者 李志丽 张振杰 陈彦硕 苏荣霞 《草业学报》 CSCD 北大核心 2024年第4期22-34,共13页
草地灌丛化对生态系统结构、功能与服务产生重要影响,目前已经认识到其对土壤水分的负面影响,但还缺乏其在区域尺度的定量评价及其驱动机制研究。在宁夏荒漠草原选取43块成对样地(即荒漠草地和灌丛地),引入样地土壤水分相对亏缺指数(PCS... 草地灌丛化对生态系统结构、功能与服务产生重要影响,目前已经认识到其对土壤水分的负面影响,但还缺乏其在区域尺度的定量评价及其驱动机制研究。在宁夏荒漠草原选取43块成对样地(即荒漠草地和灌丛地),引入样地土壤水分相对亏缺指数(PCSWDI)评价荒漠草原向灌丛转变后土壤水分亏缺空间格局现状及其驱动因子。结果表明:荒漠草原转变为灌丛后0~100 cm和100~200 cm土壤含水量分别显著下降了27.80%和57.92%,0~100 cm灌丛地的PCSWDI显著低于荒漠草地,表明0~100 cm灌丛地目前不存在土壤水分亏缺现象。地统计学分析表明,荒漠草地和灌丛地的0~100 cm土壤水分相对亏缺指数的结构方差比分别为94.73%和95.29%,均属于强空间自相关,主要受结构性因子控制。此外,地理探测器的因子探测发现0~100 cm土壤储水量、坡向和田间持水量是影响灌丛地土壤水分相对亏缺指数的主导因子;交互探测表明,灌丛地0~100 cm土壤水分相对亏缺指数空间分异是多因子共同作用的结果。尽管分析得到0~100 cm灌丛地不存在土壤水分亏缺,但100~200 cm土壤含水量显著下降已经预示了深层土壤水分的消耗。因此,干旱半干旱地区的植被恢复必须考虑其植被承载力和水分阈值,基于自然的解决方案可能是未来植被恢复的主流思路。 展开更多
关键词 荒漠草原 人为灌丛化 土壤水分 地理探测器 样地土壤水分相对亏缺指数
下载PDF
黄河流域植被总初级生产力对持续性干旱水分亏缺的响应
14
作者 薛联青 王文壮 +2 位作者 刘远洪 韩强 杨明杰 《水资源保护》 EI CAS CSCD 北大核心 2024年第3期44-51,共8页
利用植被总初级生产力和高精度分层土壤含水量数据分析了2001—2020年黄河流域生长季总初级生产力时空分布和变化特征,量化了流域不同深度土壤湿度之间的相关关系,探究了不同植被类型在生长季的总初级生产力对土壤连续水分亏缺事件的响... 利用植被总初级生产力和高精度分层土壤含水量数据分析了2001—2020年黄河流域生长季总初级生产力时空分布和变化特征,量化了流域不同深度土壤湿度之间的相关关系,探究了不同植被类型在生长季的总初级生产力对土壤连续水分亏缺事件的响应关系。结果表明:黄河流域总初级生产力空间上呈东高西低、南高北低的分布特征,生长季耕地累积总初级生产力最大、林地次之、草地最小,研究期内流域总初级生产力整体呈上升趋势,耕地相对增速最大、草地次之、林地最小;流域土壤湿度在空间和时间上均有显著差异,表层土壤含水量波动对深层土壤含水量的影响随深度增加而减小,林地和耕地表层与深层土壤含水量的相关性远高于草地;流域草地和耕地总初级生产力对土壤水分的深度敏感区间为0~40 cm,林地的深度敏感区间为0~100 cm,在深度敏感区间内,随着土壤连续水分亏缺天数的增加,草地和耕地总初级生产力依次经历短暂平稳、加速下降、降速趋缓的变化过程,而林地总初级生产力则表现出短暂下挫、长时间平稳、加速下降的变化特征。 展开更多
关键词 总初级生产力 土壤含水量 持续性干旱 水分亏缺 黄河流域
下载PDF
宁夏河东沙区柠条和新疆杨在纯林和混交林中的水分利用策略
15
作者 柳利利 韩磊 +3 位作者 王娜娜 周鹏 马云蕾 马军 《林业科学》 EI CAS CSCD 北大核心 2024年第10期40-49,共10页
【目的】探究柠条和新疆杨在纯林和混交林中的水分利用策略,分析这2个树种在混交林中的水分利用关系、土壤水利用率的影响因子以及种植方式对土壤水分环境的影响,为旱区防护林的林分结构优化调控提供理论指导。【方法】于2018年生长季(5... 【目的】探究柠条和新疆杨在纯林和混交林中的水分利用策略,分析这2个树种在混交林中的水分利用关系、土壤水利用率的影响因子以及种植方式对土壤水分环境的影响,为旱区防护林的林分结构优化调控提供理论指导。【方法】于2018年生长季(5—10月),在宁夏河东沙区选择柠条纯林、新疆杨纯林和柠条+新疆杨混交林,利用氢氧稳定同位素技术和IsoSource混合模型,分析柠条和新疆杨在纯林和混交林中的水分来源,采用相似性比例指数(PS指数)计算柠条和新疆杨在混交林中的水分利用关系;同时,监测土壤含水量、土壤养分和根系生物量,并利用结构方程模型(SEM)量化不同因子对林地植物土壤水利用率的影响;计算土壤储水量、土壤水分亏缺和土壤水消耗率,分析柠条、新疆杨纯林及混交林对土壤水分环境的影响。【结果】1)在纯林和混交林中,整个生长季的柠条的主要水分来源土层基本一致,而新疆杨则表现出不一致性。2)混交林中柠条和新疆杨在整个生长季的相似性比例指数(PS)为62.75%,表明两者之间存在较弱的水分竞争,在生长季不同时期,2个树种的主要水分来源土层不同,能通过水分利用的时间和空间分离来应对干旱。3)土壤含水量对3个林地的植物土壤水利用率的总效应最高,土壤含水量和土壤养分与柠条纯林的土壤水利用率呈极显著负相关(P<0.01),而与混交林中柠条的土壤水利用率呈极显著正相关(P<0.01),与新疆杨纯林和混交林的植物土壤水利用率呈显著正相关(P<0.05);根系生物量对3个林地的植物土壤水利用率呈显著正相关(P<0.05)。4)混交林土壤储水量高于柠条和新疆杨纯林,而土壤水分亏缺和土壤水消耗率低于柠条和新疆杨纯林。【结论】柠条在纯林和混交林中的水分利用策略基本一致,新疆杨在纯林和混交林中的水分利用策略存在差异;混交林中的柠条和新疆杨通过时间和空间上的水分利用的差异来应对干旱,且混交林相比纯林可更有效降低土壤干旱化风险;土壤含水量和土壤养分是影响3个林地植物土壤水利用率的主要因素。 展开更多
关键词 水分来源 水分利用关系 氢氧稳定同位素 结构方程模型 土壤水分亏缺
下载PDF
晋西北柠条长期种植对根系分布及土壤水碳的影响
16
作者 杨璐 刘小芳 +4 位作者 张秀敏 巨佳敏 常富强 杨泽芃 赵勇钢 《水土保持研究》 CSCD 北大核心 2024年第6期199-206,212,共9页
[目的]探究晋西北不同种植年限人工柠条深层土壤水碳和根系的相互作用,为黄土丘陵区人工植被恢复提供一定的理论基础。[方法]以不同种植年限(20,40,60 a)柠条林为研究对象,对0—300 cm土层水分、有机碳和根系特征参数进行测定,分析了三... [目的]探究晋西北不同种植年限人工柠条深层土壤水碳和根系的相互作用,为黄土丘陵区人工植被恢复提供一定的理论基础。[方法]以不同种植年限(20,40,60 a)柠条林为研究对象,对0—300 cm土层水分、有机碳和根系特征参数进行测定,分析了三者的相互关系。[结果](1)相较于荒草地,柠条长期种植(大于40 a),降低了剖面土壤水分含量,但增加了剖面土壤有机碳含量。土壤水分亏缺现象主要集中在0—60,200—300 cm土层中,而有机碳含量主要分布在0—60 cm土层中。柠条种植显著增加了0—60 cm剖面根系特征参数,其根系生物量占0—300 cm土层的50%。(2)在0—60 cm土层,有机碳与土壤水分显著负相关(p<0.01),与根体积密度显著正相关(p<0.05);在60—200 cm土层,土壤水分与有机碳、根表面积密度和根体积密度显著负相关(p<0.05);在200—300 cm土层,土壤水分与根系参数均显著正相关(p<0.05)。多元回归和通径分析结果表明根体积密度和土壤水分是影响有机碳的主要因素,较高的根体积密度和较低的土壤水分有助于增加土壤有机碳。[结论]晋西北黄土丘陵区长期种植柠条后,对表层根系特征参数的增加促进了土壤有机碳积累,但加剧了表层土壤水分消耗,并促使根系向深层生长以适应水分条件。在区域进行植被建设时有必要综合考虑植被种植年限和土层深度对土壤水分、有机碳和根系特征的综合影响。 展开更多
关键词 柠条林 根系特征参数 水分亏缺效应 土壤有机碳
下载PDF
Improvement in estimation of soil water deficit by integrating airborne imagery data into a soil water balance model 被引量:1
17
作者 Huihui Zhang Ming Han +1 位作者 José L.Chávez Yubin Lan 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第3期37-46,共10页
In this study,an approach that integrates airborne imagery data as inputs was used to improve the estimation of soil water deficit(SWD)for maize and sunflower grown under full and deficit irrigation treatments.The pro... In this study,an approach that integrates airborne imagery data as inputs was used to improve the estimation of soil water deficit(SWD)for maize and sunflower grown under full and deficit irrigation treatments.The proposed model was applied to optimize the maximum total available soil water(TAWr)by minimizing the difference between a water stress coefficient ks and crop water stress index(1-CWSI).The optimal value of maximum TAWr was then used to calibrate a soil water balance model which in turn updated the estimation of soil water deficit.The estimates of SWD in the soil profile of both irrigated maize and sunflower fields were evaluated with the crop root zone SWD derived from neutron probe measurements and the FAO-56 SWD procedure.The results indicated a good agreement between the estimated SWD from the proposed approach and measured SWD for both maize and sunflower.The statistical analyses indicated that the maximum TAWr estimated from CWSI significantly improved the estimates of SWD,which reduced the mean absolute error(MAE)and root mean square error(RMSE)by 40%and 44%for maize and 22%for sunflower,compared with the FAO-56 model.The proposed procedure works better for crops under deficit irrigation condition.With the availability of higher spatial and temporal resolution airborne imagery during the growing season,the optimization procedure can be further improved. 展开更多
关键词 soil water deficit soil water balance model airborne imagery total available water CWSI deficit irrigation
原文传递
华北平原灌溉农田的土壤水量平衡和水分利用效率 被引量:28
18
作者 姜杰 张永强 《水土保持学报》 CSCD 北大核心 2004年第3期61-65,共5页
华北平原农业面临的主要问题是水资源短缺,地下水位持续下降。通过一维土壤水量平衡模型模拟了华北平原不同灌溉方式下农田耗水量和土壤水分深层渗漏的变化,并分析了作物的产量和水分利用效率。结果显示在正常的灌溉条件下,冬小麦季地... 华北平原农业面临的主要问题是水资源短缺,地下水位持续下降。通过一维土壤水量平衡模型模拟了华北平原不同灌溉方式下农田耗水量和土壤水分深层渗漏的变化,并分析了作物的产量和水分利用效率。结果显示在正常的灌溉条件下,冬小麦季地下水的采补差额超过了200mm,某生育期一定程度的水分亏缺(返青期、拔节期或灌浆期)能明显减少冬小麦的耗水量,但没有明显减少作物的产量。因此,在一定程度上减少灌溉是可行的,但仍不能达到地下水资源的采补平衡。从长远来看,华北平原维持可持续的地下水灌溉开采,应减少冬小麦的种植面积、增加低耗水经济作物的比例。 展开更多
关键词 华北平原 灌溉农田 土壤水量平衡 水分利用效率
下载PDF
节水农业中作物水分管理基本理论问题的探讨 被引量:27
19
作者 康绍忠 蔡焕杰 +3 位作者 张富仓 刘晓明 梁银丽 梁银丽 《水利学报》 EI CSCD 北大核心 1996年第5期9-17,共9页
本文分析了玉米、小麦生育期内光合速率的变化规律,论述了土壤水分亏缺对光合作用的影响,建立了水分亏缺对光合作用影响的定量评价指标,探讨了作物光合作用与水分散失的关系及作物水分利用效率的变化规律,据此论述了节水农业中的作... 本文分析了玉米、小麦生育期内光合速率的变化规律,论述了土壤水分亏缺对光合作用的影响,建立了水分亏缺对光合作用影响的定量评价指标,探讨了作物光合作用与水分散失的关系及作物水分利用效率的变化规律,据此论述了节水农业中的作物水分管理问题. 展开更多
关键词 农作物 小麦 水分 节约用水 蒸腾
下载PDF
半干旱黄土丘陵区不同人工植被恢复土壤水分的相对亏缺 被引量:68
20
作者 杨磊 卫伟 +1 位作者 莫保儒 陈利顶 《生态学报》 CAS CSCD 北大核心 2011年第11期3060-3068,共9页
土壤水分是制约半干旱黄土丘陵区植被恢复和生态建设的关键因子。而缺乏科学指导的人工植被恢复会加剧土壤水分耗竭,造成土壤水分亏缺,从而严重阻碍该区生态系统恢复和脆弱生境的有效改善。以典型半干旱黄土丘陵区甘肃定西龙滩流域为例... 土壤水分是制约半干旱黄土丘陵区植被恢复和生态建设的关键因子。而缺乏科学指导的人工植被恢复会加剧土壤水分耗竭,造成土壤水分亏缺,从而严重阻碍该区生态系统恢复和脆弱生境的有效改善。以典型半干旱黄土丘陵区甘肃定西龙滩流域为例,对比不同植被恢复模式下土壤储水状况,并通过构建土壤水分相对亏缺指数CSWDI(Compared Soil Water Deficit Index)和样地土壤水分相对亏缺指数PCSWDI(Plot Compared Soil Water Deficit Index)进行定量化分析与评价,发现各人工植被均存在不同程度的土壤水分亏缺。其中,柠条、油松、山杏林地PCSWDI分别达到0.65、0.62、0.62,土壤水分亏缺严重,尤其是100 cm以下土层;山毛桃林地和苜蓿草地PCSWDI分别为0.38和0.17,在100—200 cm土层有一定程度的水分亏缺,但相对较轻;侧柏林地土壤水分的亏缺主要集中在20—100 cm这一层次,100 cm以下则随深度增加而降低;0—200 cm土层内,杨树林地、撂荒草地和马铃薯农地无显著水分亏缺,且在0—100 cm内土壤水分有一定的补充。CSWDI和PCSWDI能有效反映不同层次和样地土壤水分相对亏缺状况,可用于同一地区不同植被恢复模式土壤水分响应的定量化分析与评估。 展开更多
关键词 半干旱区 黄土高原 土壤水分 水分亏缺 植被恢复
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部