期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment 被引量:25
1
作者 Chao WANG ChuanYan ZHAO +2 位作者 ZhongLin XU Yang WANG HuanHua PENG 《Journal of Arid Land》 SCIE CSCD 2013年第2期207-219,共13页
The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. T... The runoff generated from mountainous regions is recognized as the main water source for inland river basins in arid environments. Thus, the mechanisms by which catchments retain water in soils are to be understood. The water storage capacity of soil depends on its depth and capacity to retain water under gravita- tional drainage and evapotranspiration. The latter can be studied through soil water retention curve (SWRC), which is closely related to soil properties such as texture, bulk density, porosity, soil organic carbon conteMt, and so on. The present study represented SWRCs using HYDRUS-1D. In the present study, we measured pl^ysical and hydraulic properties of soil samples collected from Sabina przewalskii forest (south-facing slope with highest solar radiation), shrubs (west-facing slope with medium radiation), and Picea crassifolia forest (north-facing slope with lowest radiation), and analyzed the differences in soil water storage capacity of these soil samples. Soil water content of those three vegetation covers were also measured to validate the soil water storage capacity and to analyze the relationship between soil organic matter content and soil water content. Statistical analysis showed that different vegetation covers could lead to different soil bulk densities and differences in soil water retention on the three slope aspects. Sand content, porosity, and organic carbon content of the P. crassifolia forest were rela- tively greater compared with those of the S. przewalskii forest and shrubs. However, silt content and soil bulk density were relatively smaller than those in the S. przewalskii forest and shrubs. In addition, there was a sig- nificant linear positive relationship between averaged soil water content and soil organic matter content (P〈0.0001). However, this relationship is not significant in the P. crassifolia forest. As depicted in the SWRCs, the water storage capacity of the soil was 39.14% and 37.38% higher in the P. crassifolia forest than in the S. przewalskii forest and shrubs, respectively, at a similar soil depth. 展开更多
关键词 VEGETATION soil water storage soil properties soil water retention curve forest catchment Heihe River
下载PDF
Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 被引量:27
2
作者 HUANG Gao-bao CHAI Qiang +1 位作者 FENG Fu-xue YU Ai-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1286-1296,共11页
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con... Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield. 展开更多
关键词 conservation tillage soil water storage bulk density water use efficiency winter wheat (Triticum aestivumL.) root system grain yield
下载PDF
Soil water deficit and vegetation restoration in the refuse dumps of the Heidaigou open-pit coal mine,Inner Mongolia,China 被引量:5
3
作者 Lei Huang 《Research in Cold and Arid Regions》 CSCD 2016年第1期22-35,共14页
The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experi... The sustainability of ecosystem restoration of refuse dumps in open-pit coal mines depends on plant species selection, their configuration, and the optimal usage of water resources. This study is based on field experiments in the northern refuse dump of the Heidaigou open-pit coal mine in Inner Mongolia of China established in 1995. Eight plant configurations, including trees, shrubs, grasses, and their combinations, as well as the adjacent community of natural vegetation, were selected. The succession of the revegetated plants, soil water storage, the spatiotemporal distribution of plant water deficits degree and its compensation degree were also studied. Results indicated that the vegetation cover (shrubs and herbaceous cover), richness, abundance, soil nutrients (soil organic matter, N and P), and biological soil crust coverage on the soil surface are significantly influenced by the vegetation configurations. The average soil water storage values in the shrub + grass and grass communities throughout the growing season are 208.69 mm and 206.55 mm, which are the closest to that of in the natural vegetation community (215.87 mm). Plant water deficits degree in the grass and shrub + grass communities were the lowest, but the degrees of water deficit compensation in these configuration were larger than those of the other vegetation configurations. Differences in plant water deficit degree and water compensation among the different config- urations were significant (P 〈0.05). Plant water deficit degrees were predominantly minimal on the surface, increased with increasing soil depth, and remained stable at 80 cm soil depth. The soil moisture compensation in the natural vegetation, shrub + grass, and grass communities changed at 10%, while that in other vegetation communities changed between 20% and 40%. Overall, we conclude that the shrub + grass and grass configuration modes are the optimal vegetation restoration models in terms of ecohydrology for future ecological engineering projects. 展开更多
关键词 refuse dumps soil water storage plant water deficit degree plant water compensation degree vegetation configurations
下载PDF
Effects of different ridge-furrow mulching systems on yield and water use efficiency of summer maize in the Loess Plateau of China 被引量:1
4
作者 CHEN Pengpeng GU Xiaobo +5 位作者 LI Yuannong QIAO Linran LI Yupeng FANG Heng YIN Minhua ZHOU Changming 《Journal of Arid Land》 SCIE CSCD 2021年第9期947-961,共15页
Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in th... Ridge-furrow film mulching has been proven to be an effective water-saving and yield-improving planting pattern in arid and semi-arid regions.Drought is the main factor limiting the local agricultural production in the Loess Plateau of China.In this study,we tried to select a suitable ridge-furrow mulching system to improve this situation.A two-year field experiment of summer maize(Zea mays L.)during the growing seasons of 2017 and 2018 was conducted to systematically analyze the effects of flat planting with no film mulching(CK),ridge-furrow with ridges mulching and furrows bare(RFM),and double ridges and furrows full mulching(DRFFM)on soil temperature,soil water storage(SWS),root growth,aboveground dry matter,water use efficiency(WUE),and grain yield.Both RFM and DRFFM significantly increased soil temperature in ridges,while soil temperature in furrows for RFM and DRFFM was similar to that for CK.The largest SWS was observed in DRFFM,followed by RFM and CK,with significant differences among them.SWS was lower in ridges than in furrows for RFM.DRFFM treatment kept soil water in ridges,resulting in higher SWS in ridges than in furrows after a period of no water input.Across the two growing seasons,compared with CK,RFM increased root mass by 10.2%and 19.3%at the jointing and filling stages,respectively,and DRFFM increased root mass by 7.9%at the jointing stage but decreased root mass by 6.0%at the filling stage.Over the two growing seasons,root length at the jointing and filling stages was respectively increased by 75.4%and 58.7%in DRFFM,and 20.6%and 30.2%in RFM.Relative to the jointing stage,the increased proportions of root mass and length at the filling stage were respectively 42.8%and 94.9%in DRFFM,63.2%and 115.1%in CK,and 76.7%and 132.1%in RFM,over the two growing seasons,showing that DRFFM slowed down root growth while RFM promoted root growth at the later growth stages.DRFFM treatment increased root mass and root length in ridges and decreased them in 0-30 cm soil layer,while RFM increased them in 0-30 cm soil layer.Compared with CK,DRFFM decreased aboveground dry matter while RFM increased it.Evapotranspiration was reduced by 9.8%and 7.1%in DRFFM and RFM,respectively,across the two growing seasons.Grain yield was decreased by 14.3%in DRFFM and increased by 13.6%in RFM compared with CK over the two growing seasons.WUE in CK was non-significantly 6.8%higher than that in DRFFM and significantly 22.5%lower than that in RFM across the two growing seasons.Thus,RFM planting pattern is recommended as a viable water-saving option for summer maize in the Loess Plateau of China. 展开更多
关键词 ridge-furrow mulching summer maize soil water storage soil temperature root mass root length
下载PDF
Straw strip mulching:A sustainable technology for saving water and improving efficiency in dryland winter wheat production 被引量:1
5
作者 LI Rui CHAI Shou-xi +3 位作者 CHAI Yu-wei LI Ya-wei CHANG Lei CHENG Hong-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3556-3568,共13页
An improved straw mulching model may be a sustainable agricultural production technology due to its improvements in soil water and the fertilizer environment by the recycling of waste straw resources.A four-year field... An improved straw mulching model may be a sustainable agricultural production technology due to its improvements in soil water and the fertilizer environment by the recycling of waste straw resources.A four-year field experiment was conducted in a randomized block design on the Loess Plateau of northwestern China in 2015–2019,which aimed to study the effects of straw strip mulching(SSM)and conventional flat planting without mulching(CK)on soil water storage,water consumption characteristics,water use efficiency,precipitation use efficiency,winter wheat growth,economic benefits,and nutrient benefits.The results obtained for the four years showed that the SSM treatment improved soil water storage in the 0–180 cm soil layer over the whole growth period,which was especially obvious in the 0–60 cm soil layer at the jointing and blooming stages.Compared with CK,SSM increased the contribution rate of precipitation to total evapotranspiration and increased it quite significantly by 20.4 percentage points in the earlier growth period.SSM significantly reduced soil water storage consumption in the 0–180 cm soil layer and ultimately reduced evapotranspiration by 11.2 mm during the whole period.In the 0–180 cm soil layer,SSM decreased evapotranspiration by 33.1 mm from the sowing to the jointing stages,but increased it by 19.5 mm from the jointing to the blooming stages.In addition,SSM improved the water use efficiency of grain yield by 21.6%and improved the precipitation use efficiency of grain yield by 18.6%,and it ultimately increased grain yield by 16.5%through improving spike number by 9.5%and kernel number per spike by 8.9%.SSM improved the water use efficiency of biomass yield by 13.5%and the precipitation use efficiency of biomass yield by 9.9%,and it ultimately increased biomass yield by 8.7%and plant height by 6.5%.Furthermore,SSM increased net income by 413 CNY ha–1 and the total amount of straw returned to the field after harvest by 8876–9619 kg ha–1.After returning straw to the field,SSM significantly increased the soil nutrient contents,which could significantly reduce the burden of fertilization by farmers after a few years.Therefore,straw strip mulching technology could probably be a sustainable and potentially useful practice,which could save water and increase efficiency in rainfed winter wheat production. 展开更多
关键词 soil water storage EVAPOTRANSPIRATION water use efficiency soil nutrient
下载PDF
Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China 被引量:8
6
作者 LI Hui XUE Jian-fu +2 位作者 GAO Zhi-qiang XUE Nai-wen YANG Zhen-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期817-825,共9页
Soil moisture is the most critical limiting factor impacting yields of dryland winter wheat(Triticum aestivum L.) and it is strongly affected by tillage practice and sowing methods. This study was to assess the link b... Soil moisture is the most critical limiting factor impacting yields of dryland winter wheat(Triticum aestivum L.) and it is strongly affected by tillage practice and sowing methods. This study was to assess the link between sowing method and tillage practice during summer fallow and their subsequent effect on soil moisture and grain yield. Furthermore, we sought to identify a more appropriate farming management practice for winter wheat production in Loess Plateau region of China. The experiment was conducted from 2011 to 2013, using a two-factor split plot design, including subsoiling(SS) or no tillage(NT) during summer fallow for main plots, and conventional drill sowing(DS) or plastic film drill sowing(FM) for subplots. Results showed that the maximum soil water storage(SWS) was under SS×FM treatment with values of 649.1 mm(2011–2012) and 499.4 mm(2012–2013). The SWS during the 2011–2012 growing season were 149.7 mm higher than that in the 2012–2013 growing season. And adoption of SS×FM significantly increased precipitation use efficiency(PUE) and water use efficiency(WUE) compared to other treatments for both seasons. Moreover, adoption of SS×FM significantly increased yield by 13.1, 14.4, 47.3% and 25.9, 39.1, 35.7% than other three treatments during the two growing seasons, respectively. In summary, combining subsoiling during summer fallow with plastic film drill sowing(SS×FM) increased SWS at sowing and effectively improved WUE, thus representing a feasible technology to improve grain yield of dryland winter wheat in the Loess Plateau of China. 展开更多
关键词 dryland winter wheat SUBsoilING sowing method soil water storage YIELD
下载PDF
Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia,China 被引量:2
7
作者 Nan Lu Shiping Chen +2 位作者 Burkhard Wilske Ge Sun Jiquan Chen 《Journal of Plant Ecology》 SCIE 2011年第1期49-60,共12页
Aims Evapotranspiration(ET)is a key component of water balance and is closely linked to ecosystem productivity.In arid regions,large proportion of precipitation(PPT)is returned to the atmosphere through ET,with only a... Aims Evapotranspiration(ET)is a key component of water balance and is closely linked to ecosystem productivity.In arid regions,large proportion of precipitation(PPT)is returned to the atmosphere through ET,with only a small amount available to plants.Our objective was to examine the variability in ET–soil water relationship based on a set of ecosystems that are representative for semi-arid Inner Mongolia and its main land use practices.Methods This study used Eddy covariance(EC)data of water vapor(i.e.ET,mm),PPT(mm),soil volumetric water content(VWC,%),root biomass density and soil properties from three paired sites in semi-arid Inner Mongolia:cropland(Cropland-D)versus undisturbed grassland(Steppe-D),grazed grassland(Grazed Steppe-X)versus fenced grassland(Fenced Steppe-X)and poplar plantation(Poplar-K)versus undisturbed shrubland(Shrubland-K).The paired sites experienced similar climate conditions and were equipped with the same monitoring systems.Important Findings The ET/PPT ratio was significantly lower at Cropland-D and Grazed Steppe-X in comparison to the undisturbed grasslands,Steppe-D and Fenced Steppe-X.These differences are in part explained by the lower VWC in the upper soil layers associated with compaction of surface soil in heavily grazed and fallow fields.In contrast,the ET/PPT ratio was much higher at the poplar plantation compared to the undisturbed shrubland because poplar roots tap groundwater.The VWC of different soil layers responded differently to rainfall events across the six study sites.Except for Poplar-K,ETwas significantly constrained by VWC at the other five sites,although the correlation coefficients varied among soil layers.The relative contribution of soil water to ET correlated with the density of root biomass in the soil(R2=0.67,P<0.01).The soil water storage in the upper 50 cm of soil contributed 59,43,64 and 23%of total water loss as ET at Steppe-D,Cropland-D,Shrubland-K and Poplar-K,respectively.Our across-site analysis indicates that the site level of soil water for ET differs between land use and land cover type due to altered root distribution and/or soil physical properties.As a result,we recommend that ecosystem models designed to predict the response of a wide variety of vegetation to climatic variation in arid regions include more detail in defining soil layers and interactions between evaporation,infiltration and root distribution patterns. 展开更多
关键词 EVAPOTRANSPIRATION soil water storage land use Inner Mongolia semi-arid region eddy-flux measurements
原文传递
植被冠层和坡位对长江三峡山地小流域降雨过程土壤水分响应的影响 被引量:5
8
作者 刘目兴 王秋月 +5 位作者 郭立 易军 林杭生 朱青 范碧航 张海林 《Journal of Geographical Sciences》 SCIE CSCD 2020年第6期949-968,共20页
Rainfall provides essential water resource for vegetation growth and acts as driving force for hydrologic process,bedrock weathering and nutrient cycle in the steep hilly catchment.But the effects of rainfall features... Rainfall provides essential water resource for vegetation growth and acts as driving force for hydrologic process,bedrock weathering and nutrient cycle in the steep hilly catchment.But the effects of rainfall features,vegetation types,topography,and also their interactions on soil water movement and soil moisture dynamics are inadequately quantified.During the coupled wet and dry periods of the year 2018 to 2019,time-series soil moisture was monitored with 5-min interval resolution in a hilly catchment of the Three Gorges Reservoir Area in China.Three hillslopes covered with evergreen forest(EG),secondary deciduous forest mixed with shrubs(SDFS)and deforested pasture(DP)were selected,and two monitoring sites with five detected depths were established at upslope and downslope position,respectively.Several parameters expressing soil moisture response to rainfall event were evaluated,including wetting depth,cumulative rainfall amount and lag time before initial response,maximum increase of soil water storage,and transform ratio of rainwater to soil water.The results indicated that rainfall amount is the dominant rainfall variable controlling soil moisture response to rainfall event.No soil moisture response occurred when rainfall amounts was<8 mm,and all the deepest monitoring sensors detected soil moisture increase when total rainfall amounts was>30 mm.In the wet period,the cumulative rainfall amount to trigger surface soil moisture response in EG-up site was significantly higher than in other five sites.However,no significant difference in cumulative rainfall amount to trigger soil moisture response was observed among all study sites in dry period.Vegetation canopy interception reduced the transform ratio of rainwater to soil water,with a higher reduction in vegetation growth period than in other period.Also,interception of vegetation canopy resulted in a larger accumulated rainfall amount and a longer lag time for initiating soil moisture response to rainfall.Generally,average cumulative rainfall amount for initiating soil moisture response during dry period of all sites(3.5-5.6 mm)were less than during wet period(5.7-19.7 mm).Forests captured more infiltration water compared with deforested pasture,showing the larger increments of both soil water storage for the whole soil profile and volumetric soil water content at 10 cm depth on two forest slopes.Topography dominated soil subsurface flow,proven by the evidences that less rainfall amount and less time was needed to trigger soil moisture response and also larger accumulated soil water storage increment in downslope site than in corresponding upslope site during heavy rainfall events. 展开更多
关键词 INTERCEPTION INFILTRATION lateral flow soil water storage FOREST PASTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部