期刊文献+
共找到2,416篇文章
< 1 2 121 >
每页显示 20 50 100
Study and Comparison of Swelling and Compressibility Characteristics of Crumb Marl, Flaky Marl with Attapulgite and Sandy Clay from the Diamniadio Urban Pole at the Oedometer
1
作者 Khadim Faye Fatou Samb +1 位作者 Yves Berthaud Pape Sanou Faye 《Geomaterials》 2023年第3期61-70,共10页
In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tes... In Senegal, the Diamniadio, Sebikhotane and Bargny sector contains clay soils that are problematic for construction. In order to have more information on the behavior of the clay soils of Diamniadio, free swelling tests followed by load-discharge cycles were carried out according to standard NF P 94-090-1. These tests were carried out using an Oedometric device on the three samples from the study site (sandy clays with calcareous concretion, marls with crumbs and laminated marls with attapulgite) to apprehend their swelling aspects in saturated conditions. For the free swelling test, a determination of the different swelling phases will be carried out followed by a comparison of the rate of evolution of the phases for the three samples from the site. In the same vein, the compressibility characteristics of the samples will also be provided from load-unload Oedometric tests. Thereafter, we proceed to a comparison of the void index at the initial state of the samples after two charge-discharge cycles and the influence of the cycles on the reorganization of the internal structure of the samples. These studies will provide more information on the swelling behavior of Diamniadio soils in the presence of water. 展开更多
关键词 Clay Swelling Expansive soil Evolution of The Swelling compressibility Coefficient Charge-Discharge Cycle
下载PDF
Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility 被引量:3
2
作者 庄迎春 谢康和 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第2期141-147,共7页
This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equall... This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory. 展开更多
关键词 可压缩性土壤 地基加固 循环装填 换土垫层法
下载PDF
Performance evaluation of laterite soil embankment stabilized with bottom ash,coir fiber,and lime
3
作者 Yunusa Hamdanu SANI Amin EISAZADEH 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2334-2351,共18页
In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.... In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides. 展开更多
关键词 Lateritic soil Bottom ash Coir fiber LIME Unconfined compressive strength PERMEABILITY FESEM/EDS Rainfall simulation tests
下载PDF
Biopolymer stabilization of clayey soil
4
作者 Mahdieh Azimi Amin Soltani +2 位作者 Mehdi Mirzababaei Mark B.Jaksa Nanjappa Ashwath 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2801-2812,共12页
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on... This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms. 展开更多
关键词 soil stabilization High plasticity clay Biopolymer dosage Hydrated lime Curing time Unconfined compressive strength(UCS)
下载PDF
Influencing factors of compressive strength of solidified inshore saline soil using SH lime-ash 被引量:1
5
作者 覃银辉 刘付华 周琦 《Journal of Central South University》 SCIE EI CAS 2008年第S1期386-390,共5页
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal... Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying. 展开更多
关键词 SOLIDIFIED inshore SALINE soil with SH lime-ash compressIVE strength LIME ASH COMPACTION degree salt content
下载PDF
Characterization of Clayey Soils from Congo and Physical Properties of Their Compressed Earth Blocks Reinforced with Post-Consumer Plastic Wastes 被引量:4
6
作者 R. G. Elenga B. Mabiala +2 位作者 L. Ahouet J. Goma-Maniongui G. F. Dirras 《Geomaterials》 2011年第3期88-94,共7页
Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville ... Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage. 展开更多
关键词 Clayey soilS compressed Earth BLOCK Stabilization PLASTIC WASTE
下载PDF
Numerical model of compressible gas flow in soil pollution control
7
作者 ChenJJ WangHQ 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期239-244,共6页
Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is charac... Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor extraction system in soil pollution control. 展开更多
关键词 numerical model compressible gas landfill gas MIGRATION soil vapor extraction pollution control
下载PDF
Low secondary compressibility and shear strength of Shanghai Clay 被引量:1
8
作者 李青 吴宏伟 刘国彬 《Journal of Central South University》 SCIE EI CAS 2012年第8期2323-2332,共10页
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to ... In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Cα varies significantly with consolidation stress and the maximum value of Cα occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%?0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests. 展开更多
关键词 可压缩性 上海 剪切强度 不排水抗剪强度 土壤结构 不排水三轴试验 固结应力 压缩行为
下载PDF
On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength
9
作者 Isamar Rosa Henning Roedel +2 位作者 Maria I.Allende Michael D.Lepech David J.Loftus 《Journal of Renewable Materials》 SCIE EI 2020年第8期845-861,共17页
Biopolymer-bound Soil Composites(BSC),are a novel bio-based construction material class,produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization,bri... Biopolymer-bound Soil Composites(BSC),are a novel bio-based construction material class,produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization,brick creation and in situ construction on Earth and space.This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination.Twenty protein and sand mix designs were investigated,with varying amounts of biopolymer solution and compaction regimes during manufacture.The ultimate compressive strength,density,and shrinkage of BSC samples are reported.It is observed that the compressive strength of BSC materials increases proportional to tighter particle packing(soil dry bulk density)and binder content.A theory to explain this peak compressive strength phenomenon is presented. 展开更多
关键词 compressive strength biopolymer composites material design soil bulk density in situ material utilization sustainable materials
下载PDF
Study on influence factors of cement-stabilized soil compressive strength 被引量:1
10
作者 CAI Chengqiu LI Xin ZHANG Jun GUO Qingsong 《Global Geology》 2012年第2期130-134,共5页
The cement dry jet mixing method has been used to reinforce soft cohesive ground to increase the strength of soft cohesive ground and to decrease its deformation. The study briefly introduces the curing mechanism of c... The cement dry jet mixing method has been used to reinforce soft cohesive ground to increase the strength of soft cohesive ground and to decrease its deformation. The study briefly introduces the curing mechanism of cement-soil,presents the factors of influencing on compressive strength,mainly analyses the factors including cement mixing ratio,cement strength grade,curing age,moisture content and soil texture and puts forward some rational proposals at last. 展开更多
关键词 水泥稳定土 抗压强度 影响因素 水泥粉喷桩 固化机理 混合比例 养护龄期 土壤质地
下载PDF
Experimental research on the compressibility of stale waste
11
作者 张永兴 《Journal of Chongqing University》 CAS 2003年第2期31-35,共5页
The compressibility of stale waste is studied based on the investigation into the composition and properties of stale waste in the Chongqing City. Stale waste sampled at a landfill closed for over 8 a was analyzed ind... The compressibility of stale waste is studied based on the investigation into the composition and properties of stale waste in the Chongqing City. Stale waste sampled at a landfill closed for over 8 a was analyzed indoors for its natural density, natural water content, relative density, grain size distribution curve, uniformity coefficient and curvature coefficient. Indoor compression tests for the stale waste were performed to find out the void ratio and its dependence upon applied pressure, compressibility coefficient, constrained modulus and volume compressibility coefficient. From the experimental data, the curvature coefficient and the preconsolidation pressure of the stale waste were worked out. The results indicates that the stale waste is of high compressibility, which is different from the other kinds of common soil, and is underconsolidated soil. The measured compressibility parameters are applicable to settlement calculation of closed landfills. 展开更多
关键词 可压缩性 重庆 垃圾处理 城市垃圾 垃圾掩埋场 废物处理 污染防治
下载PDF
The compressive strength experimental study of cemented soil under H2SO4 corrosive in earlier period
12
作者 HAN Peng-ju BAI Xiao-hong HAO Hai-yan 《Journal of Civil Engineering and Architecture》 2009年第3期54-58,共5页
关键词 无侧限抗压强度试验 硫酸腐蚀 水泥土 前期 溶液浓度 深度变化 压缩强度 腐蚀深度
下载PDF
Thermo-Mechanical Properties Study of Stabilized Soil Bricks to Sugar Cane Molasses and Cassava Starch Binders
13
作者 Narcisse Malanda Jean Albin Nkaya +2 位作者 Gilbert Ganga Ngambara Emamou Nondel Durvy Paul Louzolo-Kimbémbé 《Open Journal of Applied Sciences》 CAS 2023年第2期240-260,共21页
The current study deals Swith thermo-mechanical properties of stabilized soil small bricks with the help of organic binders of sugar cane molasses and cassava starch. Different formulations of soil concrete have been ... The current study deals Swith thermo-mechanical properties of stabilized soil small bricks with the help of organic binders of sugar cane molasses and cassava starch. Different formulations of soil concrete have been suggested after the geotechnical characterization of samples of soil was taken. From these, it arises that the studied soil is the most plastically clay (of type A<sub>3</sub>) according to GTR classification. Samples made of small bricks and measured out at 4%, 6% and 8% of binders (molasses, starch or molasses + starch) have been warmed up to different temperatures (100°C, 150°C, 200°C and 250°C) for the rising of the thermic behavior under different conditions and submitted to crushing testings for the estimation of characteristic resistances to the compression. According to the mechanical behavior, we note an improvement of resistances for small bricks measured 4%, 6% and 8%, of molasses respectively of 32.44%, 32.06% and 23.43% against the value of reference for small bricks without molasses. In the same way, the binder (molasses + starch) also reveals an improvement of resistance to the compression of 13.27%, 26.17% and 26.17%. On the contrary, the stabilization with the starch binder did not bring a significative improvement. According to the thermic influence, the heating at 100°C of stabilized small bricks at 4%, 6% and 8% of molasses, reveals a significative improvement of resistances. Moreover, the stabilization with the starch reveals on the contrary a good behavior for heatings at 150°C and 250°C. In short, for the binder (molasses + starch), it is the heating at 200°C that shows some improvements of remarkable resistances. Different analyses of realized statistics also show the effectivity of obtained results. For all realized formulations, the measuring out at 6% of binders (molasses, or molasses + starch) seems as optimal in front of the best thermo-mechanical revealed properties. 展开更多
关键词 CLAY MOLASSES Cassava Starch HEATING compressed soil Brick Mechanical Resistance
下载PDF
Influence of Salt-Lime Stabilization on Soil Strength for Construction on Soft Clay
14
作者 Md. Moheful Islam Chowdhury Zubayer Bin Zahid +2 位作者 Mohammad Abu Umama Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第3期528-539,共12页
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo... Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering. 展开更多
关键词 Organic soil Bearing Capacity soil Improvement Salt-Lime Unconfined compressive Strength
下载PDF
Experimental Study on Cemented Soil in Sulfate Radical Corrosive solution
15
作者 HAN Pengju 《Journal of Civil Engineering and Architecture》 2023年第8期390-394,共5页
The cemented soil is a widely used method to stabilize the weak soil.It would be working in polluted environment,and be influenced by environmental pollution such as acid rain,seawater invasion or industrial pollution... The cemented soil is a widely used method to stabilize the weak soil.It would be working in polluted environment,and be influenced by environmental pollution such as acid rain,seawater invasion or industrial pollution,which may lead to deterioration of the structure.In order to simulate and study the erosion effect process including as the changes of corrosive degree of surface,compression strength of cemented soil samples and SO_(4)^(2-)concentration of corrosive solutions,a series of tests are conducted on the cemented soil blocks cured in different concentrations of MgSO_(4),H_(2)SO_(4)and Na_(2)SO_(4)solutions.The test results show that the corrosive degree of the sample surface increases while the compression strength decreases with the increase of the corrosive solution concentration at the same erosion time,and that the corrosive degree increases with the corrosive time.The influence of inorganic compound solutions on the cemented soil follows the order of Na_(2)SO_(4)>MgSO_(4)>H_(2)SO_(4).By analyzing the mechanism,the corrosive type of H_(2)SO_(4)and MgSO_(4)solutions to cemented soil is a composite type of resolving and crystallizing combination,and Na_(2)SO_(4)solution to cemented soil is a composite type of dissolving and crystallizing combination. 展开更多
关键词 Cemented soil compressive strength CORROSION SULFATE
下载PDF
碱激发地聚物固化海相淤泥质软土抗压强度及固化机制研究
16
作者 刘景锦 罗昊鹏 +2 位作者 雷华阳 郑刚 程雪松 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2745-2754,共10页
海相淤泥质软土富含各类可溶性盐和有机质,使用水泥进行固化时易出现劣化效应。为了解决传统硅酸盐水泥固化常出现加固失效的工程问题,以NaOH为碱激发剂,使用地聚物-水泥联合固化海相淤泥质软土,研究水泥与地聚物掺量比、碱激发剂含量... 海相淤泥质软土富含各类可溶性盐和有机质,使用水泥进行固化时易出现劣化效应。为了解决传统硅酸盐水泥固化常出现加固失效的工程问题,以NaOH为碱激发剂,使用地聚物-水泥联合固化海相淤泥质软土,研究水泥与地聚物掺量比、碱激发剂含量和养护龄期对固化土无侧限抗压强度的影响,并采用扫描电镜和X射线衍射试验分析碱激发地聚物固化海相淤泥质软土的微观形态和水化产物,进一步揭示其固化机制。研究结果表明:单独加入NaOH对水泥土强度的提升并不明显,水泥土强度并不会随着碱激发剂含量的增加而显著提高。同时不同钙系地聚物的固化效果差异显著:矿渣地聚物固化土早期强度增长迅速,后期强度增长缓慢,其无侧限抗压强度随NaOH含量的增加先增加后降低,随矿渣的掺量增加而提高。粉煤灰地聚物固化土强度增长较慢,NaOH含量越高其无侧限抗压强度越大,且强度随粉煤灰的掺量增加而降低。将1/2的水泥以矿渣替代,固化土28 d强度最高可达6.19 MPa,相较于水泥土提升了107.5%。而使用同样比例的粉煤灰替代,其28 d强度最高仅为3.012 MPa。微观试验分析表明碱激发剂和地聚物的加入,可促进可溶盐水化结晶和有机质碱性环境降解,有效增加有效水化产物,增强颗粒间的凝聚力使得土体结构更加紧密,宏观上表现为固化土强度的提升。研究结果可为解决水泥加固海相淤泥软土所引起的实际技术问题提供理论指导。 展开更多
关键词 海相淤泥质软土 地聚物 碱激发 无侧限抗压强度 固化机制
下载PDF
偏高岭土基地聚合物对水泥固化红黏土的改善机制
17
作者 王志良 陈玉龙 +1 位作者 申林方 施辉盟 《材料导报》 EI CAS CSCD 北大核心 2024年第8期137-143,共7页
为了研究偏高岭土对水泥固化红黏土的改善效果,开展了三种组合(纯水泥、水泥+偏高岭土以及水泥+偏高岭土+水玻璃)的红黏土固化试验。基于固化剂化学组分和固化土的干密度、pH值以及物相成分等,研究了新型复合碱激发体系作用下偏高岭土... 为了研究偏高岭土对水泥固化红黏土的改善效果,开展了三种组合(纯水泥、水泥+偏高岭土以及水泥+偏高岭土+水玻璃)的红黏土固化试验。基于固化剂化学组分和固化土的干密度、pH值以及物相成分等,研究了新型复合碱激发体系作用下偏高岭土对水泥固化红黏土的作用机理。研究表明:当水泥、偏高岭土和水玻璃掺入比分别为12%、5%和3%时,红黏土固化效果最佳,相比于纯水泥固化土其强度提高了2.82倍。在n(SiO_(2))/n(Al_(2)O_(3))从2.53增加至4.05过程中,固化土强度发展较快,随后逐渐趋于稳定。由于水泥水化生成的Ca^(2+)能够平衡固化体系中的部分负电荷,在n(Na_(2)O)/n(Al_(2)O_(3))较小的情况下固化土强度得到了显著提升。最后通过固化土微观形貌及主要物相组成发现,新型复合碱激发体系的试样中含有无定形地聚物凝胶且主要物相特征峰峰值有所降低,说明产生了更多的地聚合凝胶产物。 展开更多
关键词 红黏土 地聚合物 偏高岭土 无侧限抗压强度 土体加固
下载PDF
三种固废改性生土材料配方设计及力学性能研究
18
作者 张坤 付智勇 +3 位作者 张凌寒 杨文豪 兰官奇 朱熹育 《硅酸盐通报》 CAS 北大核心 2024年第2期603-616,636,共15页
为改善生土材料的力学性能,本研究以铁尾矿、煤矸石、电石渣、油泥与水泥等材料作为掺和料对生土进行改性。基于单形格子法设计配方,对3种配方、180个改性生土试件进行抗压强度试验,研究不同因素对试件破坏形态、抗压强度和试验数据离... 为改善生土材料的力学性能,本研究以铁尾矿、煤矸石、电石渣、油泥与水泥等材料作为掺和料对生土进行改性。基于单形格子法设计配方,对3种配方、180个改性生土试件进行抗压强度试验,研究不同因素对试件破坏形态、抗压强度和试验数据离散性的影响;利用频数分析法,研究了固废改性生土材料的最优配方;通过CT扫描,从细观层面分析受荷后材料内部的分形和孔隙。结果表明:改性生土试件抗压破坏形态基本相同,极限位移受掺料影响显著。以煤矸石与电石渣、铁尾矿与水泥、油泥与水泥作为掺和料均可大幅提高改性生土试件的力学性能,掺和料种类、掺量对改性生土试件强度及数据离散性影响显著。经过频数寻优,3种配方的理想强度掺和料配比分别为1)铁尾矿12.1%~19.5%(质量分数,下同)、水泥13.9%~19.1%、生土65.5%~69.9%;2)电石渣6.7%~14.1%、煤矸石8.9%~11.8%、生土76.7%~81.8%;3)油泥11.4%~14.4%、水泥17.4%~19.4%、生土67.1%~70.5%。材料内部的分形和孔隙特征稳定,表现出较小的波动性和良好的密实性。 展开更多
关键词 改性生土 固废利用 抗压强度 配方设计 频数分析法
下载PDF
冻融损伤过程中纤维加筋土的抗压性能与裂隙演化
19
作者 魏丽 杨光 +1 位作者 尚军 柴寿喜 《土木工程学报》 EI CSCD 北大核心 2024年第4期81-91,共11页
冻融损伤土的微观结构,土中产生微裂隙,宏观上表现为土的力学性能下降。文章完成了石灰固化土和纤维与石灰加筋固化土的冻融试验、无侧限抗压强度试验、CT扫描试验,分析冻融损伤过程中石灰固化土和纤维与石灰加筋固化土的抗压性能与裂... 冻融损伤土的微观结构,土中产生微裂隙,宏观上表现为土的力学性能下降。文章完成了石灰固化土和纤维与石灰加筋固化土的冻融试验、无侧限抗压强度试验、CT扫描试验,分析冻融损伤过程中石灰固化土和纤维与石灰加筋固化土的抗压性能与裂隙演化特征,评价纤维对提高土的抗冻融性能的积极作用。结果表明:石灰固化土、纤维与石灰加筋固化土的抗压强度与破坏应变均随冻融次数的增加呈阶段性下降,即降幅较大阶段、降幅较小阶段和强度基本稳定阶段,纤维加筋显著提高了土的抗变形性能;土的压实度越大,纤维加筋提高土的力学性能就越明显;冻融过程中,裂隙主要分布在试样的表面、上部和下部,面裂隙率随扫描层数的增加呈先减小后增大的变化规律;纤维与石灰加筋固化土的体裂隙率、裂隙长度均值、裂隙宽度均值均小于石灰固化土,纤维加筋延缓了裂隙的形成、发展与连通。纤维与石灰加筋固化土的抗压性能与抗冻融性能显著优于石灰固化土,纤维加筋减弱了冻融土的微观结构损伤程度。 展开更多
关键词 固化土 纤维加筋土 冻融损伤 抗压性能 裂隙演化
下载PDF
减水剂对固化土强度影响的研究
20
作者 张丹 姚达 +2 位作者 邱成春 王希晨 刘振建 《中国港湾建设》 2024年第1期39-43,67,共6页
为了探究聚羧酸、木质磺酸钙(木钙)两种减水剂对固化土强度的影响规律,在不同养护龄期下,对添加不同掺量减水剂的固化土开展了一系列无侧限抗压强度试验,从水化产物角度阐述了固化土强度随两种减水剂掺量的演变机理。试验结果表明:掺有... 为了探究聚羧酸、木质磺酸钙(木钙)两种减水剂对固化土强度的影响规律,在不同养护龄期下,对添加不同掺量减水剂的固化土开展了一系列无侧限抗压强度试验,从水化产物角度阐述了固化土强度随两种减水剂掺量的演变机理。试验结果表明:掺有两种减水剂的固化土强度均随着龄期的增加而增加,前期强度增长速度快,后期强度增长缓慢。固化土的强度随着聚羧酸掺量的增加呈现先增加后缓慢减小的趋势,当聚羧酸掺量为0.4%时,固化土强度达到最大值;固化土的强度随木钙掺量的增加逐渐减小,木钙减水剂提升强度的效果弱于聚羧酸减水剂。 展开更多
关键词 木质磺酸钙 聚羧酸减水剂 固化土 无侧限抗压强度 变形系数
下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部