期刊文献+
共找到208,998篇文章
< 1 2 250 >
每页显示 20 50 100
Long-Term Fate of Agent Orange and Dioxin TCDD Contaminated Soils and Sediments in Vietnam Hotspots 被引量:4
1
作者 Kenneth Ray Olson Lois Wright Morton 《Open Journal of Soil Science》 2019年第1期1-34,共34页
The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long h... The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long history of numerous wars, foreign occupations, and most recently the Second Indochina War (aka the Vietnam War 1965-1972) which defoliated rain forests and ancient wetland mangroves and left behind contaminated soil and sediment hotspots. During this war, the United States (US) military sprayed 80 million liters of Agent Orange contaminated with the dioxin TCDD in a guerrilla war against communist insurgents. Agent Orange was a synthetic plant growth regulator comprised of equal amounts of two herbicides 2,4-dichloro phenoxyacetic acid C8H6Cl2O3 (2,4-D) and 2,4,5-trichlorophenoxyacetic acid C8H5Cl3O3 (2,4,5-T). TCDD, the dioxin, 2,3,7,8-tetrachlorodibenzodioxin (C12H4Cl4O2) was an unintended byproduct of the accelerated combustion process used in the manufacture of herbicides containing 2,4,5-T. Agent Orange has frequently been blamed for soil and sediment contamination and long-term human health problems;however, the true source of harm is the dioxin TCDD. Agent Orange has a short half-life of days and weeks after application to vegetation, and has not been found to persist, after 50 years, in the water or soils of southern Vietnam. However, the half-life of dioxin TCDD depends on where it is deposited and varies from 1 to 3 years on soil surfaces that have been fully exposed to sunlight, to as long as 20 to 50 years or more when buried in tropical subsoils, and more than 100 years in river and sea sediments. Dioxin TCDD was heavily concentrated in the US Air Force bases in Vietnam where the herbicides were stored, loaded on planes and helicopters for aerial spraying, and used extensively around military base perimeter fences as a security measure to prevent surprise attacks. Bien Hoa Air Force base, 40 km northeast of Ho Chi Minh City, continues to be one of the mega-hotspots where after 48 years the dioxin TCDD levels in fish and shrimp are still high and fishing is banned in ponds and lakes adjacent to the airbase. Although expensive, one of the most effective remediation to dioxin TCDD contaminated soils is incineration which is the recommended method of dioxin TCDD disposal. 展开更多
关键词 soils of VIETNAM Agent Orange DIOXIN TCDD Herbicides soil CONTAMINANT Sediment CONTAMINANT Half-Life HOTSPOTS Operation Ranch Hand US Airbases in VIETNAM VIETNAM War Cu Chi soil Tunnels Guerilla Warfare Incineration
下载PDF
Analysis Methods for the Determination of Anthropogenic Additions of P to Agricultural Soils
2
作者 Richard L. Haney Virginia L. Jin +4 位作者 Mari-Vaughn V. Johnson Elizabeth B. Haney R. Daren Harmel Jeffrey G. Arnold Michael J. White 《Open Journal of Soil Science》 2015年第2期59-68,共10页
Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory e... Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils. 展开更多
关键词 Phosphorus ANTHROPOGENIC ADDITIONS BIOSOLIDS Rapid-Flow Analyzer (RFA) Inductively Coupled Plasma (ICP) Texas Commission of Environmental Quality (TCEQ) soil ORGANIC C (SOC) Total N (TN) Water-Soluble ORGANIC C (WSOC) Water Soluble ORGANIC N (WSON)
下载PDF
Comparative study on production,purification of penicillin by Penicillium chrysogenum isolated from soil and citrus samples 被引量:1
3
作者 S Anto Jeya Dayalan Pramod Darwin Prakash S 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2011年第1期15-19,共5页
Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.M... Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth. 展开更多
关键词 PENICILLIUM chrysogenum soil CITRUS PENICILLIN Bioefficacy Antibiotic activity PENICILLIUM spp. PRODUCTION soil dilution plate Staphy lococcus AUREUS Characterization PRODUCTION media Zone of inhibition Carbohydrate source Isolation Efficacy Pathogen
下载PDF
Multivariate Approach to Characterizing Soil Quality of Gabonese’s Ferralitic Soils
4
作者 Neil-Yohan Musadji Rolf Gaël Mabicka Obame +4 位作者 Michel Mbina Mounguengui Jean Aubin Ondo Lydie-Stella Koutika Eric Ravire Claude Geffroy 《Open Journal of Soil Science》 2024年第4期237-268,共32页
Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivaria... Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivariate soil quality indice (SQI) models, such as additive quality index (AQI), weighted quality indexes (WQI<sub>add</sub> and WQI<sub>com</sub>) and Nemoro quality index (NQI), applied to two approaches of indicator selection: total data set (TDS) and minimum data set (MDS). Physical and chemical soil indicators were extracted from the ORSTOM’s reports resulting from a sampling campaign in different provinces of Gabon. The TDS approach shows soil quality status according to eleven soil indicators extracted from the analysis of 1,059 samples from arable soil layer (0 - 30 cm depth). The results indicated that 87% of all provinces presented a very low soil quality (Q5) whatever the model. Among soil indicators, exchangeable K<sup>+</sup> and Mg<sup>2+</sup>, bulk density and C/N ratio were retained in MDS, using principal component analysis (PCA). In the MDS approach, 50 to 63% of provinces had low soil quality grades with AQI, WQI<sub>add</sub> and NQI, whereas the total was observed with WQI<sub>com</sub>. Only 25% of provinces had medium soil quality grades with AQI and NQI models, while 12.5% (NQI) and 25% (AQI) presented high quality grades. Robust statistical analyses confirmed the accuracy and validation (0.80 r P ≤ 0.016) of AQI, WQI<sub>add</sub> and NQI into the TDS and MDS approaches. The same sensitivity index value (1.53) was obtained with AQI and WQI<sub>add</sub>. However, WQI<sub>add</sub> was chosen as the best SQI model, according to its high linear regression value (R<sup>2</sup> = 0.82) between TDS and MDS. This study has important implications in decision-making on monitoring, evaluation and sustainable management of Gabonese soils in a pedoclimatic context unfavorable to plant growth. 展开更多
关键词 GABON Ferralitic soil soil Indicators Standard Score Function soil Quality Indices Sustainable soil soil Management
下载PDF
Seismic Evaluation of Steel Moment Resisting Frames (MRFs)—Supported by Loose Granular Soil
5
作者 Muhammad Tayyab Naqash Qazi Umar Farooq Ouahid Harireche 《Open Journal of Earthquake Research》 2019年第2期37-51,共15页
Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysi... Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs. 展开更多
关键词 soil Structure Interaction (SSI) SAUDI Building Code (SBC) American Society of Civil Engineers (ASCE) FEDERAL Emergency Management Agency (FEMA) Moment Resisting Frames (MRFs) SEISMIC Resistance SEISMIC Codes
下载PDF
Influence of Soil-Foundation Interaction Properties on Oscillations of the System “Building-Building” and “Building-Stack-Like Structure”
6
作者 Gaibnazar Khodievich Khojmetov Alinazar Irismetovich Khodjimetov Anvar Sayfullaevich Yuvmitov 《World Journal of Mechanics》 2015年第6期106-116,共11页
Seismic oscillations of the “building-building” system which is interconnected buildings built close to each other, and “building-stack-like structure” system which is adjacent and connected in different ways to e... Seismic oscillations of the “building-building” system which is interconnected buildings built close to each other, and “building-stack-like structure” system which is adjacent and connected in different ways to existing building are considered in the paper. Different types of connections, such as dampers, including the ones suggested by the authors, are studied. Seismic impact is given as a harmonic function and various existing accelerograms, including synthesized ones. Distinctive feature of this paper from previously published ones [1] [2] is the fact that the emphasis falls on the influence of soil-foundation interaction properties, which are described using various models of load-displacement connections. Calculation results are compared in the case of representation of the building as concentrated masses and spatial systems. Ways to reduce seismic response of buildings during the earthquakes are pointed out. Results of experimental studies are given in the paper and are compared with calculations. 展开更多
关键词 Interaction PROPERTIES of soil-Foundation The Rigid FOUNDATION Kelvin-Voigt and Maxwell Models DAMPER the Coulombs Force Modeling Similarity MULTIPLIERS Dynamic Characteristics OSCILLATIONS Sensors Accelerogram Absorption Factor
下载PDF
Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau
7
作者 Siqiong LUO Zihang CHEN +3 位作者 Jingyuan WANG Tonghua WU Yao XIAO Yongping QIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期717-736,共20页
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an... Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%. 展开更多
关键词 initial soil conditions soil temperature soil liquid water soil ice surface energy fluxes PERMAFROST
下载PDF
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India
8
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 soil erosion soil organic carbon Rainfall-runoff erosivity factor soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
A Review of Biochemical Processes and Techniques for Soil Stabilization and Resilience
9
作者 Jonathan A. Metuge Zachary N. Senwo 《Advances in Biological Chemistry》 CAS 2024年第1期40-54,共15页
Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used... Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. . 展开更多
关键词 BIOCHEMICAL Earthen Structures soil Resilience Biopolymers soil Enzymes AGRICULTURE MICROORGANISMS Extracellular Polymeric Substances
下载PDF
Harmful evaluation of heavy metals from soil layer to the groundwater: Take the Jilin Hunchun Basin as an example
10
作者 Xiao-Dong Guo Qiang Liu +3 位作者 Hui-Rong Zhang Xu-Fei Shi Chuan-Yu Qin Zhi-Qiang Zhang 《China Geology》 CAS CSCD 2024年第1期116-124,共9页
The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the ... The continuous enrichment of heavy metals in soils has caused potential harm to groundwater.Quantitative methods to evaluate the harm of heavy metals in soil to groundwater are lacked in previous studies.Based on the theory of groundwater circulation and solid-liquid equilibrium,a simple and easy-touse flux model of soil heavy metals migrating to groundwater is constructed.Based on groundwater environmental capacity,an innovative method for evaluating the harm of heavy metals in soil to groundwater is proposed,which has been applied in Hunchun Basin,Jilin Province,China.The results show that the fluxes of soil heavy metals into groundwater in the study area are Zn,Cu,As,Pb,Cd,Ni,and Hg in descending order.The content of heavy metals in groundwater(As,Hg,Cu,Pb,Zn,Ni,and Cd)in most areas has not risen to the threshold of environmental capacity within 10 years.The harm levels of soil heavy metals to groundwater in the most townships soils are at the moderate level or below.This evaluation method can quantify the flux of soil heavy metals into groundwater simply and quickly,determine the residual capacity of groundwater to heavy metals,evaluate the harm level of soil heavy metals to groundwater,provide support for relevant departments to carry out environmental protection of soil and groundwater,and provide a reference to carry out similar studies for related scholars. 展开更多
关键词 soil heavy metals As%PLUS%Hg%PLUS%Cu%PLUS%Pb%PLUS%Zn%PLUS%Ni%PLUS%Cd Environmental capacity GROUNDWATER Hazard degree Migration flux model Agricultural geological survey engineering Hunchun Basin Jilin Province
下载PDF
Soil water resources use limit in the loess plateau of China 被引量:4
11
作者 Ting Ning Zhongsheng Guo +1 位作者 Mancai Guo Bing Han 《Agricultural Sciences》 2013年第5期100-105,共6页
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland... Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future. 展开更多
关键词 Infiltration Depth Dried soil Layer WILTING Coefficient soil WATER Resources USE LIMIT Initial Stage to Regulate the Relationship between soil WATER and Plant Growth
下载PDF
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
12
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised Universal soil Loss Equation(RUSLE) Jinghe River Basin
下载PDF
Relating Cone Penetration and Rutting Resistance to Variations in Forest Soil Properties and Daily Moisture Fluctuations
13
作者 Marie-France Jones Paul A. Arp 《Open Journal of Soil Science》 2017年第7期149-171,共23页
Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead ... Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic. 展开更多
关键词 soil Resistance to Penetration Cone Index soil MOISTURE Texture Coarse Fragments Organic Matter Weather Records HYDROLOGICAL Modelling soil TRAFFICABILITY RUTTING Depth RECREATIONAL Vehicles
下载PDF
Effects of Streptomyces <i>Biofertilizer</i>to Soil Fertility and Rhizosphere’s Functional Biodiversity of Agricultural Plants 被引量:3
14
作者 Tinatin Doolotkeldieva Saykal Bobusheva Maxabat Konurbaeva 《Advances in Microbiology》 2015年第7期555-571,共17页
In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det... In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria. 展开更多
关键词 A Low Fertility soil A BIOFERTILIZER Streptomyces fumanus gn-2 Wheat and Soybean Seeds Stimulatory Effect on Seed Germination Rhizospheres FUNCTIONAL BIODIVERSITY
下载PDF
Antibiotic-Resistant Bacterial Group in Field Soil Evaluated by a Newly Developed Method Based on Restriction Fragment Length Polymorphism Analysis 被引量:1
15
作者 Katsuji Watanabe Naoto Horinishi Kunimasa Matumoto 《Advances in Microbiology》 2015年第12期807-816,共10页
Spreading of antibiotic resistant bacteria into environment is becoming a major public health problem, implicating affair of the indirect transmission of antibiotic resistant bacteria to human through drinking water, ... Spreading of antibiotic resistant bacteria into environment is becoming a major public health problem, implicating affair of the indirect transmission of antibiotic resistant bacteria to human through drinking water, or vegetables, or daily products. Until now, the risk of nosocomial infection of antibiotic resistant bacteria has mainly been evaluated using clinical isolates by phenotypic method. To evaluate a risk of community-acquired infection of antibiotic resistant bacteria, a new method has been developed based on PCR-RFLP without isolation. By comparing restriction fragment lengths of the 16S rDNA gene from bacterial mixture grown under antibiotic treatment to those simulated from the DNA sequence, bacterial taxonomies were elucidated using the method of Okuda and Watanabe [1] [2]. In this study, taxonomies of polymyxin B resistant bacteria group in field soils, paddy field with organic manure and upland field without organic manure were estimated without isolation. In the both field soils, the major bacteria grown under the antibiotic were B. cereus group, which had natural resistance to this antibiotic. In field applied with organic manure, Prevotella spp., and the other Cytophagales, which were suggested to be of feces origin and to acquire resistance to the antibiotic, were detected. When numbers of each bacterial group were roughly estimated by the most probable number method, B. cereus group was enumerated to be 3.30 × 106 MPN/g dry soil in paddy field soil and 1.32 × 106 MPN/g dry soil in upland filed. Prevotella spp. and the other Cytophagales in paddy field were enumerated to be 1.31 × 106 MPN, and 1.07 × 106 MPN·g-1 dry soil. 展开更多
关键词 POLYMYXIN B Resistant Bacteria Field soil Microchip ELECTROPHORESIS Multiple Enzyme RESTRICTION FRAGMENT Length Polymorphism Analysis the Most PROBABLE Number METHOD
下载PDF
Dynamic Analysis of Soil Structure Interaction Effect on Multi Story RC Frame
16
作者 Hailu Getachew Kabtamu Gang Peng Denghong Chen 《Open Journal of Civil Engineering》 2018年第4期426-446,共21页
In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames... In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames with 7 and 12 story are selected for analysis. Winkler Spring and half space direct method models are used for flexible base for the frames founded on two types of soft soils with shear velocity Vs < 150 m/s Asper Seismic Codes of Chinese GB50011-2010 Soil IV and Ethiopian ES8-2015 soil D. The frames are subjected to strong ground motion matched to response spectrums of soft soil of Chinese GB50011-2010 and Ethiopian ES8-2015 for linear time history analysis. The dynamic analysis result shows Spring and Fixed base mass participation 90% reaches in 2 or 3 modes but in direct method 11 to 30 modes for story 12 and 7 respectively. However, both flexible base models have bigger fundamental period of vibration and inter story drift but smaller base shear than fixed base. In addition, within the flexible base models the inter-story drift, second order effect (P-Δ) and Story shear distribution are different along the height of frames. The spring model shows larger Story drift and second order effect (P-Δ) at the bottom of Story for both soft soils types. On the other hand, half space direct method model indicates value reverse to spring model;it gives bigger Story drift and P-Δ effect in the top stories than fixed base. Finally, this study concludes that base shear reduction due to SSI may not be always beneficial. Because the gravity load is constant in both fixed and flexible bases that cause bigger P-Δ effect at the bottom stories due to increase, inter story drift and decrease story shear in flexible base. 展开更多
关键词 soil Structure Interaction Dynamic Analysis Fixed BASE Flexible BASE Direct Method WINKLER Spring PERIOD of Vibration STORY SHEAR STORY DRIFT and P-Δ Effect
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
17
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field Water Regimes Hysteretic Behaviors soil Moisture Conditions soil Water Characteristic Curves Specific Water Capacity Wetting-Drying Cycles
下载PDF
Evaluation of C and P Factors in Universal Soil Loss Equation on Trapping Sediment: Case Study of Santubong River 被引量:2
18
作者 Kelvin K. K. Kuok Darrien Y. S. Mah P. C. Chiu 《Journal of Water Resource and Protection》 2013年第12期1149-1154,共6页
Universal Soil Loss Equation (USLE) is the most comprehensive technique available to predict the long term average annual rate of erosion on a field slope. USLE was governed by five factors include soil erodibility fa... Universal Soil Loss Equation (USLE) is the most comprehensive technique available to predict the long term average annual rate of erosion on a field slope. USLE was governed by five factors include soil erodibility factor (K), rainfall and runoff erodibility index (R), crop/vegetation and management factor (C), support practice factor (P) and slope length-gradient factor (LS). In the past, K, R and LS factors are extensively studied. But the impacts of factors C and P to outfall Total Suspended Solid (TSS) and % reduction of TSS are not fully studied yet. Therefore, this study employs Buffer Zone Calculator as a tool to determine the sediment removal efficiency for different C and P factors. The selected study areas are Santubong River, Kuching, Sarawak. Results show that the outfall TSS is increasing with the increase of C values. The most effective and efficient land use for reducing TSS among 17 land uses investigated is found to be forest with undergrowth, followed by mixed dipt. forest, forest with no undergrowth, cultivated grass, logging 30, logging 10^6, wet rice, new shifting agriculture, oil palm, rubber, cocoa, coffee, tea and lastly settlement/cleared land. Besides, results also indicate that the % reduction of TSS is increasing with the decrease of P factor. The most effective support practice to reduce the outfall TSS is found to be terracing, followed by contour-strip cropping, contouring and lastly not implementing any soil conservation practice. 展开更多
关键词 Universal soil Loss Equation Crop/Vegetation and Management FACTOR (C) Support Practice FACTOR (P) OUTFALL TOTAL Suspended SOLID % Reduction of TOTAL Suspended SOLID
下载PDF
DNA extraction method selection for agricultural soil using TOPSIS multiple criteria decision-making model 被引量:1
19
作者 Sepideh Pakpour Snizhana V. Olishevska +2 位作者 Shiv O. Prasher Abbas S. Milani Martin R. Chénier 《American Journal of Molecular Biology》 2013年第4期215-228,共14页
There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater porti... There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater portion of uncultivable microorganisms. Due to difficulties to select the optimum DNA extraction method in view of downstream molecular analyses, this article presents a straightforward mathematical framework for comparing some of the most commonly used methods. Four commercial DNA extraction kits and two physical-chemical methods (bead-beating and freeze-thaw) were compared for the extraction of DNA under several quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A260/230 ratios), degradation degree of DNA, easiness of PCR amplification, duration of extraction, and cost per extraction. From a practical point of view, it is unlikely that a single DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to compare the methods. The PowerSoil? DNA Isolation Kit was systematically defined as the best performing method for extracting DNA from soil samples. More specifically, for soil:manure and soil:manure:biochar mixtures, the PowerSoil?DNA Isolation Kit method performed best, while for neat soil samples its alternative version gained the first rank. 展开更多
关键词 DNA Extraction Agricultural soil BIOCHAR POULTRY MANURE Multiple Criteria DECISION-MAKING Technique for Order PREFERENCE by Similarity to IDEAL Solution
下载PDF
Effects of land-use patterns on soil microbial diversity and composition in the Loess Plateau,China
20
作者 ZHANG Jian GUO Xiaoqun +2 位作者 SHAN Yujie LU Xin CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第3期415-430,共16页
In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi... In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas. 展开更多
关键词 abandoned lands land-use pattern soil property diversity of soil microbe soil microbial community
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部