For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu...For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.展开更多
In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four diff...In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing.展开更多
The soil temperature is an important microclimatic factor due to the interactions between soil and plant, and the energy exchange with the atmosphere. The soil energy exchange is affected by the incident solar radiati...The soil temperature is an important microclimatic factor due to the interactions between soil and plant, and the energy exchange with the atmosphere. The soil energy exchange is affected by the incident solar radiation, type of coverage and mainly by the soil thermal properties. Among the soil thermal properties, the soil thermal diffusivity is highlighted because it affects the soil temperature profile and soil heat flux transport and distribution. Thus, the aim of this study was to evaluate different estimates of soil thermal diffusivity of a Gleyic Solonetz soil in the Brazilian Pantanal. The soil thermal diffusivity was determined by the amplitude, logarithmic, arctangent and the phase methods between 0.01 and 0.03 m, 0.01 and 0.07 m and 0.01 and 0.15 m depth. The soil thermal diffusivity estimated by the four methods showed significant differences and varied over the study period as a function of volumetric soil water content. The soil thermal diffusivity estimated by logarithmic methodshowed better performance at different depths, followed by the method of phase.展开更多
Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The...Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modem pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The middle horizons in the studied soil profiles are referred to as textural (clay-illuvial) horizons. Differences in physical soil properties (bulk density, airconductivity, texture, water content, and temperature dynamics) were studied in the soil on the loesslike loam.展开更多
In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</spa...In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> broadly classified as a problematic soils contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> silty fine sand which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">cemented with low density and low degree of saturation which is susceptible to a large and sudden reduction in their v</span><span style="font-family:Verdana;">olume upon inundation, with or without vibration in its stress. Four sites have been studied for new urban</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">roads and industry work sits, related to increase in natural water content</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> These soils go through radical rearrangement of their particles, causing sudden changes in the stress-deformation behavior which caus</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential settlement of foundation and roads. This chan</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ge in volume can lead to foundation failures and worth of damages under ground public facilities and infrastructure. In this study, the search program </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">developed to establish their different behavior under wetting in two phase</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> field and laboratory work. The obtained results are useful in mapping the trend of the factors affect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in assessing soil collapsibility rate or collapse potentials which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">observed in construction with volume change problems. The major factors observed are the natural structure skeleton of the soil particle and its grain size and mechanism of soil sedimentation. The field collapse potentials value assigned for these tested sites along Alexandria</span><span style="font-family:Verdana;">—Cairo desert road indicated that the field measured collapsibility potentials are smaller than those measured on the same extracted undisturbed samples in laboratory by 15%, which can be save</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in coast, change in proposed collapsibility improvement method and change in select foundation type. Also, field tests evaluate the collapsibility rate with time and highlight that environmental history and natural soil structure in field are the important factors affected on these soil collapse, and also, knowledgeable by collapsible soils during wetting in these sites studied.</span></span></span>展开更多
Every year about 1,500 ha of land is reclaimed from the sea along the coastline of Jiangsu Province,China.It is important to characterize the hydraulic properties of this reclaimed land to be able to predict and manag...Every year about 1,500 ha of land is reclaimed from the sea along the coastline of Jiangsu Province,China.It is important to characterize the hydraulic properties of this reclaimed land to be able to predict and manage salt and water movement for amelioration of these saline soils.In this paper,we report hydraulic properties of these salt-affected soils.The pressure-plate method,constant head method,the crust method and Klute’s method were used in this study.The satu-rated hydraulic conductivities of the soils ranged from 128.66 to 141.26 cm/day and decreased with increasing soil depth.The unsaturated hydraulic conductivities followed an expo-nential function of pressure head.The soil water retention curves were similar for three soil layers in the soil.The satu-rated water content,field capacity and wilting point decreased with increasing soil depth.Plant available water contents of the three layers in the soil profile were 0.21,0.20 and 0.19 cm3/cm3,respectively.The unsaturated soil water diffu-sivity of the studied soils ranged from 0.07 to 10.46 cm^(2)/min,and was related to the water content via an exponential relationship.展开更多
Soil moisture characteristic curve (SMC) is a fundamental soil property and its direct measurement is tedious and time consuming. Therefore, various indirect methods have been developed to predict SMC from particle-...Soil moisture characteristic curve (SMC) is a fundamental soil property and its direct measurement is tedious and time consuming. Therefore, various indirect methods have been developed to predict SMC from particle-size distribution (PSD). However, the majority of these methods often yield intermittent SMC data because they involve estimating individual SMC points. The objectives of this study were 1) to develop a procedure to predict continuous SMC from a limited number of experimental PSD data points and 2) to evaluate model predictions through comparisons with measured values. In this study, an approach that allowed predicting SMC from the knowledge of PSD, parameterized by means of the closed-form van Genuchten model (VG), was used. Through using Mohammadi and Vanclooster (MV) model, the parameters obtained from fitting of VG to PSD data were applied to predict SMC curves. Since the residual water content (Or) could not be obtained through fitting of VG-MV integrated model to PSD data, we also examined and compared four different methods estimating 0r. Results showed that the proposed equation (MV-VG integrated model) provided an excellent fit to all the PSD data and the model could adequately predict SMC as measured in forty-two soils sampled from different regions of Iran. For all soils, the method in which Or Was obtained through parameter optimization procedure provided the best overall predictions of SMC. The two methods estimating Or with Campbell and Shiozawa (CS) model resulted in less accuracy than the optimization procedure. Furthermore, the proposed model underestimated the moisture content in the dry range of SMC when the value of 0r was assumed to equal zero. 0r could be attributed to the incomplete desorption of water coated on soil particles and the accurate estimation of 0r was critical in prediction of SMC, especially for fine-textured soils at high suction heads. It could be concluded that the advantages of our approach were the continuity, robustness, and independency of model performance on soil type, allowing to improve predictions of SMC from PSD at the field and watershed scales.展开更多
Regulated deficit irrigation(RDI)was applied to gray jujube trees in an oasis region,to determine the effects of this irrigation system on soil salinity,gray jujube physiological processes,fruit yield,and fruit qualit...Regulated deficit irrigation(RDI)was applied to gray jujube trees in an oasis region,to determine the effects of this irrigation system on soil salinity,gray jujube physiological processes,fruit yield,and fruit quality.Treatments consisted of severe,moderate and low deficit irrigation(irrigated with 85%,70%and 55%of CK,respectively)at the flowering stage to fruit set stage.During the other growth stages,all treatments were irrigated with 80%of pan evaporation,which was the same as that in control.The results indicated that soil salinity was enhanced during the periods of water stress,but the high value of soil salinity declined by 3.48%-37.27%,at each depth,after irrigation was resumed.RDI caused a decline in the photosynthetic rate,transpiration rate,and stomatal conductance,but enhanced the water use efficiency of the leaves.However,the leaf photosynthetic rate was effectively enhanced after the recovery of irrigation,especially in the moderate deficit irrigation treatment,which exceeded the control.This led to an improved fruit yield,which was 9.57%higher than that of the control.The deficit treatments caused a significant increase in the soluble solid content,soluble sugar content,single fruit weight and sugar/acid ratio.Enhanced vitamin C content,resulting from deficit treatments,has also been observed in the gray jujube.Therefore,this research shows that RDI provides some benefits in the production of gray jujube trees in desert conditions.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42330708 and 41820104001)。
文摘For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects.
基金This research was financially supported by National Natural Science Foundation of China(51179166)Specialized Research Fund for the Doctoral Program of Higher Education of China(20123250110004)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing.
文摘The soil temperature is an important microclimatic factor due to the interactions between soil and plant, and the energy exchange with the atmosphere. The soil energy exchange is affected by the incident solar radiation, type of coverage and mainly by the soil thermal properties. Among the soil thermal properties, the soil thermal diffusivity is highlighted because it affects the soil temperature profile and soil heat flux transport and distribution. Thus, the aim of this study was to evaluate different estimates of soil thermal diffusivity of a Gleyic Solonetz soil in the Brazilian Pantanal. The soil thermal diffusivity was determined by the amplitude, logarithmic, arctangent and the phase methods between 0.01 and 0.03 m, 0.01 and 0.07 m and 0.01 and 0.15 m depth. The soil thermal diffusivity estimated by the four methods showed significant differences and varied over the study period as a function of volumetric soil water content. The soil thermal diffusivity estimated by logarithmic methodshowed better performance at different depths, followed by the method of phase.
文摘Soils developed from the Quaternary loesslike loams have been studied in the south of the forest-steppe zone on the Central Russian Upland. A polygenetic nature of the soil profile on the loesslike loams is shown. The modem pedogenetic processes in this soil ensure its eluvial-illuvial differentiation with the development of multilayered coatings in the illuvial horizon. The middle horizons in the studied soil profiles are referred to as textural (clay-illuvial) horizons. Differences in physical soil properties (bulk density, airconductivity, texture, water content, and temperature dynamics) were studied in the soil on the loesslike loam.
文摘In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> broadly classified as a problematic soils contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> silty fine sand which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">cemented with low density and low degree of saturation which is susceptible to a large and sudden reduction in their v</span><span style="font-family:Verdana;">olume upon inundation, with or without vibration in its stress. Four sites have been studied for new urban</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">roads and industry work sits, related to increase in natural water content</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> These soils go through radical rearrangement of their particles, causing sudden changes in the stress-deformation behavior which caus</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential settlement of foundation and roads. This chan</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ge in volume can lead to foundation failures and worth of damages under ground public facilities and infrastructure. In this study, the search program </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">developed to establish their different behavior under wetting in two phase</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> field and laboratory work. The obtained results are useful in mapping the trend of the factors affect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in assessing soil collapsibility rate or collapse potentials which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">observed in construction with volume change problems. The major factors observed are the natural structure skeleton of the soil particle and its grain size and mechanism of soil sedimentation. The field collapse potentials value assigned for these tested sites along Alexandria</span><span style="font-family:Verdana;">—Cairo desert road indicated that the field measured collapsibility potentials are smaller than those measured on the same extracted undisturbed samples in laboratory by 15%, which can be save</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in coast, change in proposed collapsibility improvement method and change in select foundation type. Also, field tests evaluate the collapsibility rate with time and highlight that environmental history and natural soil structure in field are the important factors affected on these soil collapse, and also, knowledgeable by collapsible soils during wetting in these sites studied.</span></span></span>
文摘Every year about 1,500 ha of land is reclaimed from the sea along the coastline of Jiangsu Province,China.It is important to characterize the hydraulic properties of this reclaimed land to be able to predict and manage salt and water movement for amelioration of these saline soils.In this paper,we report hydraulic properties of these salt-affected soils.The pressure-plate method,constant head method,the crust method and Klute’s method were used in this study.The satu-rated hydraulic conductivities of the soils ranged from 128.66 to 141.26 cm/day and decreased with increasing soil depth.The unsaturated hydraulic conductivities followed an expo-nential function of pressure head.The soil water retention curves were similar for three soil layers in the soil.The satu-rated water content,field capacity and wilting point decreased with increasing soil depth.Plant available water contents of the three layers in the soil profile were 0.21,0.20 and 0.19 cm3/cm3,respectively.The unsaturated soil water diffu-sivity of the studied soils ranged from 0.07 to 10.46 cm^(2)/min,and was related to the water content via an exponential relationship.
文摘Soil moisture characteristic curve (SMC) is a fundamental soil property and its direct measurement is tedious and time consuming. Therefore, various indirect methods have been developed to predict SMC from particle-size distribution (PSD). However, the majority of these methods often yield intermittent SMC data because they involve estimating individual SMC points. The objectives of this study were 1) to develop a procedure to predict continuous SMC from a limited number of experimental PSD data points and 2) to evaluate model predictions through comparisons with measured values. In this study, an approach that allowed predicting SMC from the knowledge of PSD, parameterized by means of the closed-form van Genuchten model (VG), was used. Through using Mohammadi and Vanclooster (MV) model, the parameters obtained from fitting of VG to PSD data were applied to predict SMC curves. Since the residual water content (Or) could not be obtained through fitting of VG-MV integrated model to PSD data, we also examined and compared four different methods estimating 0r. Results showed that the proposed equation (MV-VG integrated model) provided an excellent fit to all the PSD data and the model could adequately predict SMC as measured in forty-two soils sampled from different regions of Iran. For all soils, the method in which Or Was obtained through parameter optimization procedure provided the best overall predictions of SMC. The two methods estimating Or with Campbell and Shiozawa (CS) model resulted in less accuracy than the optimization procedure. Furthermore, the proposed model underestimated the moisture content in the dry range of SMC when the value of 0r was assumed to equal zero. 0r could be attributed to the incomplete desorption of water coated on soil particles and the accurate estimation of 0r was critical in prediction of SMC, especially for fine-textured soils at high suction heads. It could be concluded that the advantages of our approach were the continuity, robustness, and independency of model performance on soil type, allowing to improve predictions of SMC from PSD at the field and watershed scales.
基金This study was funded by the National Key Research Program(2016YFC0400208)Technical Demonstration Project of Ministry of Water Resources(SF-201733).
文摘Regulated deficit irrigation(RDI)was applied to gray jujube trees in an oasis region,to determine the effects of this irrigation system on soil salinity,gray jujube physiological processes,fruit yield,and fruit quality.Treatments consisted of severe,moderate and low deficit irrigation(irrigated with 85%,70%and 55%of CK,respectively)at the flowering stage to fruit set stage.During the other growth stages,all treatments were irrigated with 80%of pan evaporation,which was the same as that in control.The results indicated that soil salinity was enhanced during the periods of water stress,but the high value of soil salinity declined by 3.48%-37.27%,at each depth,after irrigation was resumed.RDI caused a decline in the photosynthetic rate,transpiration rate,and stomatal conductance,but enhanced the water use efficiency of the leaves.However,the leaf photosynthetic rate was effectively enhanced after the recovery of irrigation,especially in the moderate deficit irrigation treatment,which exceeded the control.This led to an improved fruit yield,which was 9.57%higher than that of the control.The deficit treatments caused a significant increase in the soluble solid content,soluble sugar content,single fruit weight and sugar/acid ratio.Enhanced vitamin C content,resulting from deficit treatments,has also been observed in the gray jujube.Therefore,this research shows that RDI provides some benefits in the production of gray jujube trees in desert conditions.