Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take ...Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take all polygons of the same map unit on a map as a whole to extract the soil–environment relationship.Such approach ignores the difference in the environmental conditions represented by individual soil polygons of the same map unit.This paper proposes a method of mining soil–environment relationships from individual soil polygons to update conventional soil maps.The proposed method consists of three major steps.Firstly,the soil–environment relationships represented by each individual polygon on a conventional soil map are extracted in the form of frequency distribution curves for the involved environmental covariates.Secondly,for each environmental covariate,these frequency distribution curves from individual polygons of the same soil map unit are synthesized to form the overall soil–environment relationship for that soil map unit across the mapped area.And lastly,the extracted soil–environment relationships are applied to updating the conventional soil map with new,improved environmental data by adopting a soil land inference model(SoLIM)framework.This study applied the proposed method to updating a conventional soil map of the Raffelson watershed in La Crosse County,Wisconsin,United States.The result from the proposed method was compared with that from the previous method of taking all polygons within the same soil map unit on a map as a whole.Evaluation results with independent soil samples showed that the proposed method exhibited better performance and produced higher accuracy.展开更多
To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second ...To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.展开更多
Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferrugin...Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.展开更多
Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelag...Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelagoes in the South China Sea.We found positive plant species-area relationships for both coral and continental archipelagoes.However,our results showed that different mechanisms contributed to similar plant species-area relationships between the two archipelagoes.For coral islands,soil nutrients and spatial distance among communities played major roles in shaping plant community structure and species diversity.By contrast,the direct effect of island area,and to a lesser extent,soil nutrients determined plant species richness on continental islands.Intriguingly,increasing soil nutrients availability(N,P,K)had opposite effects on plant diversity between the two archipelagoes.In summary,the habitat quality effect and dispersal limitation are important for regulating plant diversity on coral islands,whereas the passive sampling effect,and to a lesser extent,the habitat quality effect are important for regulating plant diversity on continental islands.More generally,our findings indicate that island plant species-area relationships are outcomes of the interplay of both niche and neutral processes,but the driving mechanisms behind these relationships depends on the type of islands.展开更多
In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Co...In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Considering that the words describing soil–environment relationships are often mixed with unrelated words, the first step is to extract the needed words and organize them in a structured way. This paper applies natural language processing(NLP) techniques to automatically extract and structure information from soil survey reports regarding soil–environment relationships. The method includes two steps:(1) construction of a knowledge frame and(2) information extraction using either a rule-based method or a statistic-based method for different types of information. For uniformly written text information, the rule-based approach was used to extract information. These types of variables include slope, elevation, accumulated temperature, annual mean temperature, annual precipitation, and frost-free period. For information contained in text written in diverse styles, the statistic-based method was adopted. These types of variables include landform and parent material. The soil species of China soil survey reports were selected as the experimental dataset. Precision(P), recall(R), and F1-measure(F1) were used to evaluate the performances of the method. For the rule-based method, the P values were 1, the R values were above 92%, and the F1 values were above 96% for all the involved variables. For the method based on the conditional random fields(CRFs), the P, R and F1 values for the parent material were, respectively, 84.15, 83.13, and 83.64%; the values for landform were 88.33, 76.81, and 82.17%, respectively. To explore the impact of text types on the performance of the CRFs-based method, CRFs models were trained and validated separately by the descriptive texts of soil types and typical profiles. For parent material, the maximum F1 value for the descriptive text of soil types was 90.7%, while the maximum F1 value for the descriptive text of soil profiles was only 75%. For landform, the maximum F1 value for the descriptive text of soil types was 85.33%, which was similar to that of the descriptive text of soil profiles(i.e., 85.71%). These results suggest that NLP techniques are effective for the extraction and structuration of soil–environment relationship information from a text data source.展开更多
Environmental heterogeneity significantly affects the structure of ecological communities.Exploring vegetation distribution and its relationship with environmental factors is essential to understanding the abiotic mec...Environmental heterogeneity significantly affects the structure of ecological communities.Exploring vegetation distribution and its relationship with environmental factors is essential to understanding the abiotic mechanism(s)driving vegetation succession,especially in the ecologically fragile areas.In this study,based on the quantitative analysis of plant community and environmental factors in 68 plots at 10 different transects in the Minqin oasis-desert ecotone(ODE)of northwestern China,we investigated desert vegetation distribution and species-environment relationships using multivariate analysis.Two-way indicator species analysis(TWINSPAN),detrended correspondence analysis(DCA),and canonical correspondence analysis(CCA)methods were used.A total of 28 species,belonging to 27 genera in 8 families,were identified.Chenopodiaceae,Zygophyllaceae,Gramineae,and Leguminosae were the largest families.Annual and perennial herbs accounted for 28.60%of the total number of plants,while shrubs(42.90%)were the most dominant.Nitraria tangutorum was the constructive species of the desert plant community.We divided the 68 plots surveyed in this study into 7 community types,according to the results of TWINSPAN.The distribution of these 7 communities in the DCA ordination graph showed that species with a similar ecotype were clustered together.Results of CCA indicated that groundwater was the dominant factor influencing vegetation distribution,while distance between plot and oasis(Dis)and soil electrical conductivity(EC)were the local second-order factors.Our study suggests that optimizing the utilization of groundwater in oases is key to controlling the degradation of desert vegetation.The favorable topographic conditions of sand dunes should be fully utilized for vegetal dune stabilization,and the influence of soil salinity on the selection of afforestation tree species should be considered.展开更多
The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated...The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4 500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.展开更多
[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultu...[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultural products-producing areas in 9 counties (districts) of Xi'an City was investigated. A total of 609 soil samples were collected, and their Cd, Hg, As, Pb and Cr contents were determined. In addition, the heavy metal pollution status of the collected soil samples was evaluated by Nemerow index method. [Result] The pollution in Baqiao, Chang'an; Gaoling, Lan- tian, Lintong and Yanliang was of grade I, belonging to clean level; the pollution in Hu County, Weiyang and Zhouzhi was of grade II, near the warning line, belong to relatively clean level. There was no large-area soil heavy metal pollution overall. The investigated areas could be used as production bases of pollution-free agricultural products and even high-quality agricultural products. However, the heavy met- als contents in some individual areas exceeded relevant soil environmental quality standards, and they should be avoided or forbidden during regional planning and selection of production area. [Conclusion] Soil heavy metal pollution of agricultural habitat environment in Xi'an City is generally at good status. Targeting at the future development plan of Xi'an City, feasible and scientific suggestions are put forward.展开更多
[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shula...[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.展开更多
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ...Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil.展开更多
Isothermal microcalorimetry provides thermodynamic and kinetic information on various reactions and processes and is thereby a powerful tool to elucidate their mechanisms. Certain improvement in isothermal microcalori...Isothermal microcalorimetry provides thermodynamic and kinetic information on various reactions and processes and is thereby a powerful tool to elucidate their mechanisms. Certain improvement in isothermal microcalorimetry with regard to the studies on soil and environmental sciences is briefly described. This review mainly focuses on the use of microcalorimetry in the determination of soil microbial activity, monitoring the toxicity and biodegradation of soil organic pollutants, the risk evaluation of metals and metalloids, the heat effect of ion exchange and adsorption in soil, and environmental researches. Promising prospects for the applications of the technique in the field are also discussed.展开更多
Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil polluti...Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.展开更多
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i...In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.展开更多
In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 t...In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 to analyze its structural and degree change of land use since the 1980s, and calculate the benefits and transformation of land use type. The results show that the non-agricultural land increased rapidly, especially the urban and rural residential spots and industrial and mining (RIM) land use increased mostly rapidly, an increase of 64%. Meanwhile, the intensity of land exploitation was accelerating, land was transformed to industries with better benefit and areas experiencing faster urbanization process. By analyzing the harmonious degree of land exploitation in economic and environmental aspects, we find out that the land use imbalance mainly existed in the municipal area of Xi'an, and the imbalance index of land use based on GDP and non-agricultural population were respectively 12.37 and 14.67 in 2000, which were far higher than those in other regions. Nevertheless the environmental harmonious degree in the municipal area of Xi'an ranges between 0.6 and 0.8, which was better than that of suburban area. Some proposals addressing to the problems of harmonious level in all scales, resources utilization, projects management and feasibility analysis and intensive urbanization are also put forward.展开更多
Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposur...Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided into 3 phases: fishes exposed to the low dose groups (0.5-5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0-25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0-50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of exposure. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was increased and then decreased. It was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a level which is little more than the control when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group comparing with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of GST activity.展开更多
Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on t...Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration extended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentration of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.展开更多
Alpine meadow ecosystem is fragile and highly sensitive to climate change.An understanding of the allocation of above-and below-ground plant biomass and correlations with environmental factors in alpine meadow ecosyst...Alpine meadow ecosystem is fragile and highly sensitive to climate change.An understanding of the allocation of above-and below-ground plant biomass and correlations with environmental factors in alpine meadow ecosystem can result in better protection and effective utilization of alpine meadow vegetation.We chose an alpine meadow in the Qinghai-Tibetan Plateau of China as the study area and designed experimental warming plots using a randomized block experimental design.We used single-tube infrared radiators as warming devices,established the warming treatments,and measured plant above- (AGB) and below-ground biomass (BGB) during the growing seasons (May to September) in 2012 and 2013.We determined the allocation of biomass and the relationship between biomass and soil environment under the warming treatment.Biomass indices including above-ground biomass,below-ground biomass and the ratio of root to shoot (R/S) ,and soil factors including soil moisture and soil temperature at different depths were measured.The results showed that (1) BGB of the alpine meadow had the most significant allometric correlation with its AGB (y=298.7x~ (0.44) ,P〈0.001) ,but the relationship decreased under warming treatment and the determination coefficient of the functional equation was 0.102 which was less than that of 0.188 of the unwarming treatment (control) ; (2) BGB increased,especially in the deeper soil layers under warming treatment (P〉0.05) .At 0–10 cm soil depth,the percentages of BGB under warming treatment were smaller than those of the control treatment with the decreases being 8.52% and 8.23% in 2012 and 2013,respectively.However,the BGB increased 2.13% and 2.06% in 2012 and 2013,respectively,at 10–50 cm soil depths; (3) BGB had significant positive correlations with soil moisture at 100 cm depth and with soil temperature at 20–100 cm depths (P〈0.05) ,but the mean correlation coefficient of soil temperature was 0.354,greater than the 0.245 of soil moisture.R/S ratio had a significant negative correlation with soil temperature at 20 cm depth (P〈0.05) .The warmer soil temperatures in shallow layers increased the biomass allocation to above-ground plant parts,which leading to the increase in AGB;whereas the enhanced thawing of frozen soil in deep layers causing by warming treatment produced more moisture that affected plant biomass allocation.展开更多
Currently, the majority of paddy fields in Japan are grown using chemical fertilizers and synthetic chemical pesticides, since chemical fertilizers can provide the nutrients necessary for plant growth. However, there ...Currently, the majority of paddy fields in Japan are grown using chemical fertilizers and synthetic chemical pesticides, since chemical fertilizers can provide the nutrients necessary for plant growth. However, there are concerns regarding the environmental impact of chemical fertilizer and pesticides production, such as reduction of soil microorganisms and water pollution due to the runoff of fertilizer components from the soil caused by excessive fertilizer application. In this study, we investigated the effects of the application of organic and chemical fertilizers on the plant growth of paddy fields, in addition to their effects on the chemical and biological properties of the soil. The panicle numbers of rough and brown rice, the 1000-grain weight of the rough and brown rice, and the percentages of ripened grains were significantly higher in paddy soils grown with organic fertilizers than in those grown with chemical fertilizers. In addition, the total carbon (TC) contents and pH values were significantly higher in the soils of paddy fields grown with organic fertilizers. Furthermore, the soils of paddy fields grown with organic fertilizers exhibited greater bacterial biomasses, N circulation activity, and P circulation activity than the soils of paddy fields grown using chemical fertilizers, although the differences were not significant. In this study, the difference in plant growth <span>was </span><span>appeared in fertilizer application such as organic and chemical fertilizers. It was indicated that the organic fertilizer and pesticide reduction management increased the soil bacterial biomass and activated the material cycle such as N circulation activity.</span>展开更多
Since industrial revolution, the atmospheric CO2 concentration has kept a continuous increase by more than 2.2 ppm yr^-1, and approaches to almost 400 ppm at present (Jouzel 2012). China has become the largest count...Since industrial revolution, the atmospheric CO2 concentration has kept a continuous increase by more than 2.2 ppm yr^-1, and approaches to almost 400 ppm at present (Jouzel 2012). China has become the largest country of greenhouse gas emission (GHG), and confronts with great challenge to mitigate GHG.展开更多
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under di...This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution.展开更多
基金supported by the National Natural Science Foundation of China (41431177 and 41422109)the Innovation Project of State Key Laboratory of Resources and Environmental Information System of China (O88RA20CYA)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province, China
文摘Conventional soil maps contain valuable knowledge on soil–environment relationships.Such knowledge can be extracted for use when updating conventional soil maps with improved environmental data.Existing methods take all polygons of the same map unit on a map as a whole to extract the soil–environment relationship.Such approach ignores the difference in the environmental conditions represented by individual soil polygons of the same map unit.This paper proposes a method of mining soil–environment relationships from individual soil polygons to update conventional soil maps.The proposed method consists of three major steps.Firstly,the soil–environment relationships represented by each individual polygon on a conventional soil map are extracted in the form of frequency distribution curves for the involved environmental covariates.Secondly,for each environmental covariate,these frequency distribution curves from individual polygons of the same soil map unit are synthesized to form the overall soil–environment relationship for that soil map unit across the mapped area.And lastly,the extracted soil–environment relationships are applied to updating the conventional soil map with new,improved environmental data by adopting a soil land inference model(SoLIM)framework.This study applied the proposed method to updating a conventional soil map of the Raffelson watershed in La Crosse County,Wisconsin,United States.The result from the proposed method was compared with that from the previous method of taking all polygons within the same soil map unit on a map as a whole.Evaluation results with independent soil samples showed that the proposed method exhibited better performance and produced higher accuracy.
基金supported by China Geological Survey(DD20230554,DD20230089)the Strategic Priority Research Program of the Chinese Academy of Science(XDA28020302)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(QCJJ2022-40).
文摘To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.
基金Anglo American and Knowledge Center for Biodiversity for financial supportthe research funding agencies CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico)+2 种基金scholarship from CNPq(151341/2023-0,150001/2023-1)FAPEMIG(Fundação de AmparoàPesquisa do Estado de Minas Gerais)Peld-CRSC 17(Long Term Ecology Program-campo rupestre of Serra do Cipó)。
文摘Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.
基金financially supported by the National Key Research and Development Program of China(2021YFC3100405)the Science and Technology Basic Works Program of the Ministry of Science and Technology of China(2013FY111200)+2 种基金the Guangdong Provincial Special Fund for Natural Resource Affairs on Ecology and Forestry Construction(GDZZDC20228704)the National Natural Science Foundation of China(32070222)the National Science Foundation of USA(DEB-1342754 and DEB-1856318)。
文摘Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelagoes in the South China Sea.We found positive plant species-area relationships for both coral and continental archipelagoes.However,our results showed that different mechanisms contributed to similar plant species-area relationships between the two archipelagoes.For coral islands,soil nutrients and spatial distance among communities played major roles in shaping plant community structure and species diversity.By contrast,the direct effect of island area,and to a lesser extent,soil nutrients determined plant species richness on continental islands.Intriguingly,increasing soil nutrients availability(N,P,K)had opposite effects on plant diversity between the two archipelagoes.In summary,the habitat quality effect and dispersal limitation are important for regulating plant diversity on coral islands,whereas the passive sampling effect,and to a lesser extent,the habitat quality effect are important for regulating plant diversity on continental islands.More generally,our findings indicate that island plant species-area relationships are outcomes of the interplay of both niche and neutral processes,but the driving mechanisms behind these relationships depends on the type of islands.
基金supported by the National Natural Science Foundation of China (41431177 and 41601413)the National Basic Research Program of China (2015CB954102)+1 种基金the Natural Science Research Program of Jiangsu Province, China (BK20150975 and 14KJA170001)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province, China
文摘In addition to soil samples, conventional soil maps, and experienced soil surveyors, text about soils(e.g., soil survey reports) is an important potential data source for extracting soil–environment relationships. Considering that the words describing soil–environment relationships are often mixed with unrelated words, the first step is to extract the needed words and organize them in a structured way. This paper applies natural language processing(NLP) techniques to automatically extract and structure information from soil survey reports regarding soil–environment relationships. The method includes two steps:(1) construction of a knowledge frame and(2) information extraction using either a rule-based method or a statistic-based method for different types of information. For uniformly written text information, the rule-based approach was used to extract information. These types of variables include slope, elevation, accumulated temperature, annual mean temperature, annual precipitation, and frost-free period. For information contained in text written in diverse styles, the statistic-based method was adopted. These types of variables include landform and parent material. The soil species of China soil survey reports were selected as the experimental dataset. Precision(P), recall(R), and F1-measure(F1) were used to evaluate the performances of the method. For the rule-based method, the P values were 1, the R values were above 92%, and the F1 values were above 96% for all the involved variables. For the method based on the conditional random fields(CRFs), the P, R and F1 values for the parent material were, respectively, 84.15, 83.13, and 83.64%; the values for landform were 88.33, 76.81, and 82.17%, respectively. To explore the impact of text types on the performance of the CRFs-based method, CRFs models were trained and validated separately by the descriptive texts of soil types and typical profiles. For parent material, the maximum F1 value for the descriptive text of soil types was 90.7%, while the maximum F1 value for the descriptive text of soil profiles was only 75%. For landform, the maximum F1 value for the descriptive text of soil types was 85.33%, which was similar to that of the descriptive text of soil profiles(i.e., 85.71%). These results suggest that NLP techniques are effective for the extraction and structuration of soil–environment relationship information from a text data source.
基金supported by the National Key Research and Development Program of China(SQ2016YFHZ20617-03,2018YFC0507102-05)the National Natural Science Foundation of China(41661008,41761051,41761006,41661064,31560128,41801102)
文摘Environmental heterogeneity significantly affects the structure of ecological communities.Exploring vegetation distribution and its relationship with environmental factors is essential to understanding the abiotic mechanism(s)driving vegetation succession,especially in the ecologically fragile areas.In this study,based on the quantitative analysis of plant community and environmental factors in 68 plots at 10 different transects in the Minqin oasis-desert ecotone(ODE)of northwestern China,we investigated desert vegetation distribution and species-environment relationships using multivariate analysis.Two-way indicator species analysis(TWINSPAN),detrended correspondence analysis(DCA),and canonical correspondence analysis(CCA)methods were used.A total of 28 species,belonging to 27 genera in 8 families,were identified.Chenopodiaceae,Zygophyllaceae,Gramineae,and Leguminosae were the largest families.Annual and perennial herbs accounted for 28.60%of the total number of plants,while shrubs(42.90%)were the most dominant.Nitraria tangutorum was the constructive species of the desert plant community.We divided the 68 plots surveyed in this study into 7 community types,according to the results of TWINSPAN.The distribution of these 7 communities in the DCA ordination graph showed that species with a similar ecotype were clustered together.Results of CCA indicated that groundwater was the dominant factor influencing vegetation distribution,while distance between plot and oasis(Dis)and soil electrical conductivity(EC)were the local second-order factors.Our study suggests that optimizing the utilization of groundwater in oases is key to controlling the degradation of desert vegetation.The favorable topographic conditions of sand dunes should be fully utilized for vegetal dune stabilization,and the influence of soil salinity on the selection of afforestation tree species should be considered.
基金financially supported by the Iranian National Institute for Oceanography(INIO)
文摘The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4 500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.
文摘[Objective] This study aimed to understand and grasp the soil heavy metal pollution status of agricultural habitat environment in Xi'an City. [Method] The soil heavy metal pollution status of pollution-free agricultural products-producing areas in 9 counties (districts) of Xi'an City was investigated. A total of 609 soil samples were collected, and their Cd, Hg, As, Pb and Cr contents were determined. In addition, the heavy metal pollution status of the collected soil samples was evaluated by Nemerow index method. [Result] The pollution in Baqiao, Chang'an; Gaoling, Lan- tian, Lintong and Yanliang was of grade I, belonging to clean level; the pollution in Hu County, Weiyang and Zhouzhi was of grade II, near the warning line, belong to relatively clean level. There was no large-area soil heavy metal pollution overall. The investigated areas could be used as production bases of pollution-free agricultural products and even high-quality agricultural products. However, the heavy met- als contents in some individual areas exceeded relevant soil environmental quality standards, and they should be avoided or forbidden during regional planning and selection of production area. [Conclusion] Soil heavy metal pollution of agricultural habitat environment in Xi'an City is generally at good status. Targeting at the future development plan of Xi'an City, feasible and scientific suggestions are put forward.
基金Supported by National 973 Program(2010CB951500)National 863 Program(2006AA-120103)~~
文摘[Objective] The aim was to explore evaluated precision on quality of soil environment polluted with zinc in agricultural production areas and to provide references for verification of production area.[Method] In Shulan City in Jilin Province,soils were sampled and analyzed in a laboratory using single-factor pollution index and GIS based spatial interpolation.The quality of environment polluted with zinc was assessed and related methods were compared according to Environment Quality Standard of Green Food Production Area.[Result] Spatial interpolation of zinc in soils based on GIS proved more precise than traditional methods;cokriging method with co-factors was higher in precision than common cokriging;cokriging method with zinc and organic matter was higher in precision than cokriging with zinc alone.[Conclusion] Quality assessment on environment polluted with zinc based on GIS interpolation is more scientific and reasonable than traditional methods.
基金Projects(51478484,51308551,51678571)supported by the National Natural Science Foundation of ChinaProject(2016zzts063)supported by Fundamental Research Funds for the Central Universities,China
文摘Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil.
基金Project supported by the National Natural Science Foundation of China (No. 40571084).
文摘Isothermal microcalorimetry provides thermodynamic and kinetic information on various reactions and processes and is thereby a powerful tool to elucidate their mechanisms. Certain improvement in isothermal microcalorimetry with regard to the studies on soil and environmental sciences is briefly described. This review mainly focuses on the use of microcalorimetry in the determination of soil microbial activity, monitoring the toxicity and biodegradation of soil organic pollutants, the risk evaluation of metals and metalloids, the heat effect of ion exchange and adsorption in soil, and environmental researches. Promising prospects for the applications of the technique in the field are also discussed.
文摘Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.
基金supported by the National Science and Technology Infrastructure Platforms Construction Projects of China (No.2005DKA 10400)the Major Fund in the Tenth Five-Year Development Plan of China (No.50499333-08)
文摘In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.
基金Key scientific research project of Shaanxi Normal University Natural Science Basic Research Plan in Shaanxi Province of China, No.2004D04
文摘In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 to analyze its structural and degree change of land use since the 1980s, and calculate the benefits and transformation of land use type. The results show that the non-agricultural land increased rapidly, especially the urban and rural residential spots and industrial and mining (RIM) land use increased mostly rapidly, an increase of 64%. Meanwhile, the intensity of land exploitation was accelerating, land was transformed to industries with better benefit and areas experiencing faster urbanization process. By analyzing the harmonious degree of land exploitation in economic and environmental aspects, we find out that the land use imbalance mainly existed in the municipal area of Xi'an, and the imbalance index of land use based on GDP and non-agricultural population were respectively 12.37 and 14.67 in 2000, which were far higher than those in other regions. Nevertheless the environmental harmonious degree in the municipal area of Xi'an ranges between 0.6 and 0.8, which was better than that of suburban area. Some proposals addressing to the problems of harmonious level in all scales, resources utilization, projects management and feasibility analysis and intensive urbanization are also put forward.
基金supported by the National Natural Science Foundation of China (No. 20777040)the Hi-TechResearch and Development Program (863) of China (No.2007AA061201).
文摘Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided into 3 phases: fishes exposed to the low dose groups (0.5-5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0-25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0-50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of exposure. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was increased and then decreased. It was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a level which is little more than the control when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group comparing with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of GST activity.
基金Supported by the National Natural Science Foundation of China(No.50779062)
文摘Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration extended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentration of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.
基金funded by the National Natural Science Foundation of China (41501219)
文摘Alpine meadow ecosystem is fragile and highly sensitive to climate change.An understanding of the allocation of above-and below-ground plant biomass and correlations with environmental factors in alpine meadow ecosystem can result in better protection and effective utilization of alpine meadow vegetation.We chose an alpine meadow in the Qinghai-Tibetan Plateau of China as the study area and designed experimental warming plots using a randomized block experimental design.We used single-tube infrared radiators as warming devices,established the warming treatments,and measured plant above- (AGB) and below-ground biomass (BGB) during the growing seasons (May to September) in 2012 and 2013.We determined the allocation of biomass and the relationship between biomass and soil environment under the warming treatment.Biomass indices including above-ground biomass,below-ground biomass and the ratio of root to shoot (R/S) ,and soil factors including soil moisture and soil temperature at different depths were measured.The results showed that (1) BGB of the alpine meadow had the most significant allometric correlation with its AGB (y=298.7x~ (0.44) ,P〈0.001) ,but the relationship decreased under warming treatment and the determination coefficient of the functional equation was 0.102 which was less than that of 0.188 of the unwarming treatment (control) ; (2) BGB increased,especially in the deeper soil layers under warming treatment (P〉0.05) .At 0–10 cm soil depth,the percentages of BGB under warming treatment were smaller than those of the control treatment with the decreases being 8.52% and 8.23% in 2012 and 2013,respectively.However,the BGB increased 2.13% and 2.06% in 2012 and 2013,respectively,at 10–50 cm soil depths; (3) BGB had significant positive correlations with soil moisture at 100 cm depth and with soil temperature at 20–100 cm depths (P〈0.05) ,but the mean correlation coefficient of soil temperature was 0.354,greater than the 0.245 of soil moisture.R/S ratio had a significant negative correlation with soil temperature at 20 cm depth (P〈0.05) .The warmer soil temperatures in shallow layers increased the biomass allocation to above-ground plant parts,which leading to the increase in AGB;whereas the enhanced thawing of frozen soil in deep layers causing by warming treatment produced more moisture that affected plant biomass allocation.
文摘Currently, the majority of paddy fields in Japan are grown using chemical fertilizers and synthetic chemical pesticides, since chemical fertilizers can provide the nutrients necessary for plant growth. However, there are concerns regarding the environmental impact of chemical fertilizer and pesticides production, such as reduction of soil microorganisms and water pollution due to the runoff of fertilizer components from the soil caused by excessive fertilizer application. In this study, we investigated the effects of the application of organic and chemical fertilizers on the plant growth of paddy fields, in addition to their effects on the chemical and biological properties of the soil. The panicle numbers of rough and brown rice, the 1000-grain weight of the rough and brown rice, and the percentages of ripened grains were significantly higher in paddy soils grown with organic fertilizers than in those grown with chemical fertilizers. In addition, the total carbon (TC) contents and pH values were significantly higher in the soils of paddy fields grown with organic fertilizers. Furthermore, the soils of paddy fields grown with organic fertilizers exhibited greater bacterial biomasses, N circulation activity, and P circulation activity than the soils of paddy fields grown using chemical fertilizers, although the differences were not significant. In this study, the difference in plant growth <span>was </span><span>appeared in fertilizer application such as organic and chemical fertilizers. It was indicated that the organic fertilizer and pesticide reduction management increased the soil bacterial biomass and activated the material cycle such as N circulation activity.</span>
文摘Since industrial revolution, the atmospheric CO2 concentration has kept a continuous increase by more than 2.2 ppm yr^-1, and approaches to almost 400 ppm at present (Jouzel 2012). China has become the largest country of greenhouse gas emission (GHG), and confronts with great challenge to mitigate GHG.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41430634)the State Key Laboratory of Geomechanics and Geotechnical Engineering (Grant No. Y11002)
文摘This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution.