期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases 被引量:3
1
作者 Abdel-Gayed M.Ahmad Abo-Zaid G.Attia +1 位作者 Matar S.Mohamed Hafez E.Elsayed 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2080-2092,共13页
Four isolates of Bacillus subtilis coded,B4,B7,B8 and B10 were examined as biocontrol agents for their abilities and antagonistic effect on the in vitro growth of certain phytopathogenic fungi of peanut,Rhizoctonia so... Four isolates of Bacillus subtilis coded,B4,B7,B8 and B10 were examined as biocontrol agents for their abilities and antagonistic effect on the in vitro growth of certain phytopathogenic fungi of peanut,Rhizoctonia solani and Sclerotium rolfsii.Bacillus subtilis isolate B4(GenBank accession no.EF150884)was the highly effective one for inhibiting the fungal mycelial growth.Batch fermentation of B.subtilis isolate B4 was carried out and the maximum biomass achieved was 4.53 g L-1 at 11 h.Bacillus subtilis isolate B4 was formulated and evaluated as a biofungicide to reduce peanut soil-borne diseases under greenhouse and field conditions at the side of Rizolex-T(fungicide)as standard.Treatments by formulated plant growth-promoting rhizobacteria(PGPR)B.subtilis B4 and Rizolex-T in a soil infested with R.solani,S.rolfsii and mixture of them were more effective in decreasing percentage of damping-off,root and pod rot disease incidence(%)in greenhouse and open field environment during the two seasons 2015 and 2016.Treatments by PGPR gave highly dry weight and number of healthy pods compared to control of fungi treatment which was nearby to dry weights of healthy pods achieved by treatments by Rizolex-T in a soil infested with S.rolfsii,R.solani and mixture of them.Formulated PGPR B.subtilis B4 gave higher increasing of yield percentage than treatment by Rizolex-T in the two evaluated seasons 2015 and 2016.It can conclude that the produced bioforumlated agent was more efficient as fungicide when compared with the other chemical synthesized fungicides,safe for human and the environment and economy. 展开更多
关键词 PEANUT soil-borne diseases Bacillus SUBTILIS BIOCONTROL FERMENTATION FORMULATION
下载PDF
Prevention and Control Technology of Potato Soil-borne Diseases 被引量:1
2
作者 Jie XU Wenting ZHU Li SUN 《Asian Agricultural Research》 2022年第5期45-46,60,共3页
In recent years,potato soil-borne diseases have occurred severely.The investigation shows that potato Fusarium wilt greatly affects potato yield,leading to a yield reduction rate of 21.8%.Potato powdery scab shows ver... In recent years,potato soil-borne diseases have occurred severely.The investigation shows that potato Fusarium wilt greatly affects potato yield,leading to a yield reduction rate of 21.8%.Potato powdery scab shows very mild symptoms on potato tuber,basically with no symptoms in some plots,but shows obvious symptoms on the root system.A large number of nodules which are produced on one side of the root system seriously affect water and fertilizer absorption function of the potato root system.Potato tubers expand slowly,leading to small potato tuber,low yield and low commodity rate.The fungus can survive in soil for more than 10 years.Potato soil-borne diseases are harmful and are difficult to control.Susceptible plants can be detected by high definition chromatographic control method and pathogen detection.For prevention and control of potato soil-borne diseases,first of all,disease-resistant varieties should be chosen and virus-free potato seeds are used for sowing.Secondly,metham and dazomet can be used to treat soil in order to prevent and control potato soil-borne diseases.The results showed that the dead seedling rate treated by metham was reduced from 35%to 12.5%compared with the blank control,and the yield was increased by 44.09 kg/ha,with an increase rate of 18.2%.Compared with the blank control,the dead seedling rate treated by dazomet was decreased from 35%to 7.5%,and the yield was increased by 38.10 kg/ha,with an increase rate of 15.7%.The soil treatment received obvious yield increase effect. 展开更多
关键词 POTATO soil-borne disease Prevention and control
下载PDF
Susceptibility of Wheat Varieties to Soil-Borne <i>Rhizoctonia</i>Infection
3
作者 Gyula Oros Zoltán Naár Donát Magyar 《American Journal of Plant Sciences》 2013年第11期2240-2258,共19页
Response of 19 wheat varieties cultivated in Hungary varied within large limits to soil borne Rhizoctonia infection. The most frequent symptom, usually leading to damping off was the root neck necrosis. Four significa... Response of 19 wheat varieties cultivated in Hungary varied within large limits to soil borne Rhizoctonia infection. The most frequent symptom, usually leading to damping off was the root neck necrosis. Four significant factors influencing the susceptibility of wheat comprised 71% of total variation but none of them was dominant. The inhibition of development of survivors in Rhizoctonia infested soil correlated with overall susceptibility of variety concerned. The varieties Emese, Kikelet and Palotás are proved to be less susceptible, but none of the varieties could be certified as tolerant. No relationships were revealed between pathogenicity of 26 Rhizoctonia strains studied and their taxonomic position or origin. The anamorph strains of Athelia, Ceratobasidium, Ceratorhiza and Waitea similar to Thanatephorus anamorphs selectively infected the wheat varieties, but the syndromatic pictures were undistinguishable with unarmed eye. R. solani was proved to be more aggressive against germinating wheat than R. cerealis. Nine significant factors influencing the virulence of Rhizoctonia strains comprised 82% of total variation, and six of them influenced exclusively Thanatephorus anamorphs. 展开更多
关键词 Wheat RHIZOCTONIA Tolerance Brown Patch soil-borne Virulence
下载PDF
Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse 被引量:16
4
作者 LI Wei-hua LIU Qi-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第3期677-687,共11页
Soil fungi play a very important role in the soil ecological environment. In agricultural production, long-term monoculture and continuous cropping lead to changes in fungal community diversity. However, the effects o... Soil fungi play a very important role in the soil ecological environment. In agricultural production, long-term monoculture and continuous cropping lead to changes in fungal community diversity. However, the effects of long-term monoculture and continuous cropping on strawberry plant health and fungal community diversity have not been elucidated. In this study, using high-throughput sequencing(HTS), we compared the fungal community and diversity of strawberry rhizosphere soil after various durations of continuous cropping(0, 2, 4, 6, 8, 10 and 12 years). The results showed that soil fungal diversity increased with consecutive cropping years. Specifically, the soil-borne disease pathogens Fusarium and Guehomyces were significantly increased after strawberry continuous cropping, and the abundance of nematicidal(Arthrobotrys) fungi decreased from the fourth year of continuous cropping. The results of correlation analysis suggest that these three genera might be key fungi that contribute to the changes in soil properties that occur during continuous cropping. In addition, physicochemical property analysis showed that the soil nutrient content began to decline after the fourth year of continuous cropping. Spearman's correlation analysis showed that soil pH, available potassium(AK) and ammonium nitrogen(NH_4^+-N) were the most important edaphic factors leading to contrasting beneficial and pathogenic associations across consecutive strawberry cropping systems. 展开更多
关键词 FUNGAL community soil-borne disease replanted STRAWBERRY RHIZOSPHERE SOIL agricultural SOIL ECOLOGY
下载PDF
A LAMP-assay-based specific microbiota analysis reveals community dynamics and potential interactions of 13 major soybean root pathogens 被引量:6
5
作者 YE Wen-wu ZENG Dan-dan +4 位作者 XU Miao YANG Jin MA Jia-xin WANG Yuan-chao ZHENG Xiao-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2056-2063,共8页
Soybean root diseases are associated with numerous fungal and oomycete pathogens;however,the community dynamics and interactions of these pathogens are largely unknown.We performed 13 loop-mediated isothermal amplific... Soybean root diseases are associated with numerous fungal and oomycete pathogens;however,the community dynamics and interactions of these pathogens are largely unknown.We performed 13 loop-mediated isothermal amplification(LAMP)assays that targeted specific soybean root pathogens,and traditional isolation assays.A total of 159 samples were collected from three locations in the Huang-Huai-Hai region of China at three soybean growth stages(30,60,and 90 days after planting)in 2016.In LAMP results,we found that pathogen communities differed slightly among locations,but changed dramatically between soybean growth stages.Phytophthora sojae,Rhizoctonia solani,and Fusarium oxysporum were most frequently detected at the early stage,whereas Phomopsis longicolla,Fusarium equiseti,and Fusarium virguliforme were most common in the later stages.Most samples(86%)contained two to six pathogen species.Interestingly,the less detectable species tended to exist in the samples containing more detected species,and some pathogens preferentially co-occurred in diseased tissue,including P.sojae–R.solani–F.oxysporum and F.virguliforme–Calonectria ilicicola,implying potential interactions during infection.The LAMP detection results were confirmed by traditional isolation methods.The isolated strains exhibited different virulence to soybean,further implying a beneficial interaction among some pathogens. 展开更多
关键词 soybean root disease fungal and oomycete plant pathogens soil-borne and seed-borne pathogens LAMP assay complex infection
下载PDF
Effects of Soil Biodiversity on Plant Health:A Review
6
作者 Xue FU Yongwei FU +2 位作者 Min TU Xia ZENG Hongji ZHANG 《Asian Agricultural Research》 2022年第9期35-40,43,共7页
Soil is the most biologically abundant ecosystem on the earth.Soil biodiversity has significant impact on maintaining soil ecological balance and agricultural production,especially on healthy growth and disease contro... Soil is the most biologically abundant ecosystem on the earth.Soil biodiversity has significant impact on maintaining soil ecological balance and agricultural production,especially on healthy growth and disease control of plants.Therefore,it is of great significance to study soil biodiversity.This paper reviewed the role of soil biodiversity in plant growth.First of all,the history of soil biodiversity was introduced.Secondly,the composition of soil biodiversity was introduced,and the role of soil biodiversity in regulating the quantity and species of soil organisms,maintaining the balance and stability of soil system,participating in nutrient circulation and energy flow,and promoting plant health were discussed based on the interactions among microbial diversity,fauna diversity and plant diversity.Finally,combined with the background of advocating the protection of soil biodiversity in the great time,the potential factors threatening soil biodiversity were analyzed. 展开更多
关键词 Soil biodiversity Plant health soil-borne disease Prevention and control Soil ecological environment
下载PDF
Biofumigation effects of brassicaceous cover crops on soil health in cucurbit agroecosystems in Hawaii, USA 被引量:1
7
作者 Philip WAISEN Zhiqiang CHENG +1 位作者 Brent S.SIPES Koon-Hui WANG 《Pedosphere》 SCIE CAS CSCD 2022年第4期521-531,共11页
Brassicaceous cover crops, such as brown mustard (Brassica juncea) and oil radish (Raphanus sativus), are commonly used for biofumigation, a process that utilizes isothiocyanates (ITCs) generated from the hydrolysis o... Brassicaceous cover crops, such as brown mustard (Brassica juncea) and oil radish (Raphanus sativus), are commonly used for biofumigation, a process that utilizes isothiocyanates (ITCs) generated from the hydrolysis of glucosinolates in Brassica plants to suppress soil-borne pathogens, including plant-parasitic nematodes. Given the biocidal nature of ITCs, limited information is available on the non-target effects of biofumigation on free-living nematodes, which are reliable soil health indicators. The objectives of this study were to determine if biofumigation methods effective against plant-parasitic nematodes would have non-target effects on free-living nematodes, and to examine the relationships between biofumigation indicators and nematode communities. Three field trials were conducted to examine whether different biofumigation methods would affect free-living nematodes. Tissue maceration of biofumigant crops, soil tillage, and black plastic mulching were adopted singly or in combination to generate different regimes of biofumigation efficacy. Termination of biofumigant crops by tissue maceration and soil tillage followed by black plastic mulching for one week was most effective in suppressing plant-parasitic nematodes and enhancing bacterial decomposition. However, these effects did not last through the subsequent zucchini (Cucurbita pepo) crop cycle. When comparing changes in soil glucose and sulfate concentrations as indicators of biofumigation efficacy, we found that soil sulfate was a better indicator of biofumigation efficacy than soil glucose, owing to the more stable state of sulfate in soil. Canonical correspondence analysis between soil sulfate as a biofumigation indicator and nematode soil health indicators revealed strong positive correlations of sulfate level with the abundances of bacterivorous and carnivorous nematodes, enrichment index, brown mustard biomass, and soil temperature. However, biofumigation did not affect the nematode community structure. This study demonstrated that biofumigation can suppress plant-parasitic nematodes without compromising soil health. 展开更多
关键词 brown mustard free-living nematode glucose oil radish plant-parasitic nematode soil-borne pathogens sulfate
原文传递
The genus Pythium in Taiwan,China(1)-a synoptic review
8
作者 Hon-Hing HO 《Frontiers in Biology》 CSCD 2009年第1期15-28,共14页
The genus Pythium,with slightly over 280 described species,has been classified traditionally with other filamentous,coenocytic,sporangia-producing fungi as“Phycomyetes”.However,with recent advances in chemical,ultra... The genus Pythium,with slightly over 280 described species,has been classified traditionally with other filamentous,coenocytic,sporangia-producing fungi as“Phycomyetes”.However,with recent advances in chemical,ultrastructural and molecular studies,Pythium spp.are now considered as“fungus-like organisms”or“pseudo-fungi”and are placed in the Kingdom Chromista or Kingdom Straminopila,distinct from the true fungi of the Kingdom Fungi or Kingdom Mycota.They are widely distributed throughout the world as soil saprophytes or plant pathogens.Because of the warm moist maritime climate,Taiwan,China,is especially rich in Pythium species.To date,48 species of Pythium have been reported from Taiwan,China,with the dominant species being Py.vexans,Py.spinosum,Py.splendens,Py.aphanidermatum,Py.dissotocum and Py.acanthicum.There is no definite geographical distribution of Pythium spp.in Taiwan,China.Twenty nine species of Pythium have proven to be plant pathogens attacking a wide variety of woody and herbaceous plants primarily causing pre-and post-emergence seedling damping-off,root rot,stem rot and rotting of fruits,tubers and ginger rhizomes,resulting in serious economic losses.The most important plant pathogenic species include Py.aphanidermatum and Py.Myriotylum,which are most active during the hot and wet summer months;whereas Py.splendens,Py.spinosum,Py.ultimum and Py.irregulare cause the greatest damage in the cool winter.Most Pythium spp.are non-specific pathogens,infecting mainly juvenile or succulent tissues.This review attempts to assess the taxonomic position of the genus Pythium and provide details of the historical development of the study of Pythium as pathogens in Taiwan,China,causing diseases of sugarcane,trees,vegetables,fruits,specialty crops and flowering plants,as well as measures to control these diseases.Of special note is the introduction of the S-H mixture which,when used as soil amendment,effectively controls many soil-borne Pythium diseases during the early stages of plant growth.The diversity of Pythium species in Taiwan,China,is discussed in comparison with the situation in the mainland of China and suggestions are made to fully utilize Pythium spp.as agents for biological control,in industry and medicine. 展开更多
关键词 Pythiaceae OOMYCETES CHROMISTA Straminolia plant pathogens soil-borne disease saprophytes mycoparasites BIODIVERSITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部