期刊文献+
共找到29,157篇文章
< 1 2 250 >
每页显示 20 50 100
Centrifuge and numerical modeling of h-type anti-slide pile reinforced soil-rock mixture slope
1
作者 ZHANG Hao XING Hao-feng +1 位作者 XUE Dao-rui TANNANT Dwayne 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1441-1457,共17页
Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective ... Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective means to prevent the instability of soilrock mixture slope.In this paper,a centrifuge model test was conducted to investigate the stress distribution of the h-type anti-slide pile and the evolution process of soil arching during the loading.A numerical simulation model was built based on the similar relationship between the centrifuge model and the prototype to investigate the influence factors of the pile spacing,anchored depth,and crossbeam stiffness,and some recommendations were proposed for its application.The results show that the bending moment distribution of the rear pile exhibits Wshaped,while for the front pile,its distribution resembles V-shaped.The soil arching evolution process during loading is gradually dissipated from bottom to top and from far to near.During the loading,the change of bending moment can be divided into three stages,namely,the stabilization stage,the slow growth stage,and the rapid growth stage.In engineering projects,the recommended values of the pile spacing,anchored depth,and crossbeam stiffness are 4.0d,2.0d,and 2.0EI,where d and EI are the diameter and bending stiffness of the h-type anti-slide pile respectively. 展开更多
关键词 Centrifugemodel test Numerical simulation h-type anti-slide pile soil-rock mixture slop Soil arching
下载PDF
Soil-water characteristic surface model of soil-rock mixture
2
作者 WANG Kui HUI Ying +2 位作者 ZHOU Chuan LI Xue RONG Yao 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2756-2768,共13页
The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fi... The relationship between the water content or saturation of unsaturated soils and its matrix suction is commonly described by the soilwater characteristic curve(SWCC).Currently,study on the SWCC model is focused on fine-grained soils like clay and silty soils,but the SWCC model for grinding soil-rock mixture(SRM)is less studied.Considering that the SRM is in a certain compaction state in the actual project,this study established a surface model with three variables of coupling compaction degree-substrate suction-moisture content based on the Cavalcante-Zornberg soil-water characteristic curve model.Then,the influence of each fitting parameter on the curve was analyzed.For the common SRM,the soil-water characteristic test was conducted.Moreover,the experimental measurements exhibit remarkable consistency with the mode surface.The analysis shows that the surface model intuitively describes the soil-water characteristics of grinding SRM,which can provide the SWCC of soils with bimodal pore characteristics under specific compaction degrees.Furthermore,it can reflect the influence of compaction degrees on the SWCC of rock-soil mass and has a certain prediction effect.The SWCC of SRM with various soil-rock ratios have a double-step shape.With the increase in compaction degree,the curves as a whole tend toward decreasing mass moisture content.The curve changes are mainly concentrated in the large pore section. 展开更多
关键词 soil-rock mixture Soil-water characteristic Surface model Compaction effect
下载PDF
Pore evolution and shear characteristics of a soil-rock mixture upon freeze-thaw cycling
3
作者 LiYun Tang ShiYuan Sun +4 位作者 JianGuo Zheng Long Jin YongTang Yu Tao Luo Xu Duan 《Research in Cold and Arid Regions》 CSCD 2023年第4期179-190,共12页
The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided q... The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided qualitative analysis of the changes in pore or strength of soil-rock mixture under freeze-thaw cycles.In contrast,few studies focused on the quantitative evaluation of pore change and the relationship between the freeze-thaw strength deterioration and pore change of soil-rock mixture.This study aims to explore the correlation between the micro-pore evolution characteristics and macro-mechanics of a soil-rock mixture after frequent freeze-thaw cycles during the construction and subsequent operation in a permafrost region.The pore characteristics of remolded soil samples with different rock contents(i.e.,25%,35%,45%,and 55%)subjected to various freeze-thaw cycles(i.e.,0,1,3,6,and 10)were quantitatively analyzed using nuclear magnetic resonance(NMR).Shear tests of soil-rock samples under different normal pressures were carried out simultaneously to explore the correlation between the soil strength changes and pore characteristics.The results indicate that with an increase in the number of freeze-thaw cycles,the cohesion of the soil-rock mixture generally decreases first,then increases,and finally decreases;however,the internal friction angle shows no apparent change.With the increase in rock content,the peak shear strength of the soil-rock mixture rises first and then decreases and peaks when the rock content is at 45%.When the rock content remains constant,as the number of freeze-thaw cycles rises,the shear strength of the sample reaches its peak after three freeze-thaw cycles.Studies have shown that with an increase in freeze-thaw cycles,the medium and large pores develop rapidly,especially for pores with a size of 0.2–20μm.Freeze-thaw cycling affects the internal pores of the soil-rock mixture by altering its skeleton and,therefore,impacts its macro-mechanical characteristics. 展开更多
关键词 Freeze-thaw cycling soil-rock mixture NMR Pore change Shear strength
下载PDF
Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone 被引量:2
4
作者 Pengfei Wang Xiangyang Zhang 《Fluid Dynamics & Materials Processing》 EI 2022年第2期271-283,共13页
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u... A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship. 展开更多
关键词 Fault zone rock block proportion soil-rock mixture confining pressure loading and unloading seepage characteristic
下载PDF
Study on mechanical properties of soil-rock mixture of various compactness subjected to freeze-thaw cycles 被引量:2
5
作者 Zhong Zhou HaoHui Ding +1 位作者 WenYuan Gao LinRong Xu 《Research in Cold and Arid Regions》 CSCD 2021年第5期450-462,共13页
The soil-rock mixture,a collection of soil particles and rock blocks,is inherently heterogeneous and anisotropic due to significant particle size and material strength differences.This study conducts triaxial tests on... The soil-rock mixture,a collection of soil particles and rock blocks,is inherently heterogeneous and anisotropic due to significant particle size and material strength differences.This study conducts triaxial tests on soil-rock mixture samples of various compactness subjected to varying freeze-thaw cycles.A mesoscopic simulation is carried out by particle flow code(PFC)to analyze the effects of freeze-thaw cycles on the mechanical properties of soil and rock particles.The results show that the mechanical properties of the soil-rock mixture under freeze-thaw cycles are greatly affected by the initial compaction.In general,when the degree of compaction is higher,the influence of freeze-thaw cycles on the soil-rock mixture is greater.The stress-strain curves of the samples with different compactness demonstrate strain-softening behavior.The freeze-thaw cycles greatly influence the failure strength of the samples with a higher degree of compaction but have little impact on the samples with a lower degree of compaction.On the microscopic level,during freeze-thaw cycles,the pore volume in the highly compacted sample is too small to accommodate the volume expansion from ice crystal formation,causing significant strength loss among the soil and rock particles and deterioration of the macroscopic properties of the soil-rock mixture. 展开更多
关键词 soil-rock mixtures freeze-thaw cycle degree of compaction particle flow code
下载PDF
Mechanical Properties of Soil-Rock Mixture Filling in Fault Zone Based on Mesostructure
6
作者 Mei Tao Qingwen Ren +2 位作者 Hanbing Bian Maosen Cao Yun Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期681-705,共25页
Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-... Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-term safety of high arch dams.To study the macroscopic and mesoscopic mechanical properties of SRM,the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology,and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions,specimen dimensions,and experiment fund.To this end,this study presents a mesoscopic numerical method for simulating the mechanical behavior of SRM by proposing mesoscopic model generation technology based on its mesostructure features,and a rock parameter model considering size effect.The validity and rationality of the presented mesoscopic numerical method is experimentally verified by the triaxial compression tests with different rock block contents(RBC).The results indicate that the rock block can increase the strength of SRM,and it is proved that the random generation technique and the rock parameter model considering size effect are validated.Furthermore,there are multiple failure surfaces for inhomogeneous geomaterial of SRM,and the angle of the failure zone is no longer 45◦.The yielding zones of the specimen are more likely to occur in thin sections of soil matrix isolated by blocks with the failure path avoiding the rock block.The proposed numerical method is effective to investigate the meso-damage mechanism of SRM. 展开更多
关键词 soil-rock mixture(SRM) triaxial compression tests random generation technique MESOSTRUCTURE rock parameter model size effect finite element method
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:3
7
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK mixture SLOPE stability SLOPE FAILURE CENTRIFUGE model test
下载PDF
Mechanical characteristics of soil-rock mixtures containing macropore structure based on 3D modeling technology 被引量:3
8
作者 LIU Yong SUN Shao-rui +4 位作者 WEI Ji-hong SONG Jing-lei YU Yong-xiang HE Wei ZHANG Ji-xing 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2224-2240,共17页
Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the... Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction. 展开更多
关键词 Soil rock mixtures Macropore structure Mechanical characteristics Discrete element method Shear band
下载PDF
Numerical analysis of the failure process of soil-rock mixtures through computed tomography and PFC3D models 被引量:18
9
作者 Yang Ju Huafei Sun +2 位作者 Mingxu Xing Xiaofei Wang Jiangtao Zheng 《International Journal of Coal Science & Technology》 EI 2018年第2期126-141,共16页
关键词 土岩混合料 岩土材料 强度 裂纹
下载PDF
Generation of 3D random meso-structure of soil-rock mixture and its meso-structural mechanics based on numerical tests 被引量:2
10
作者 徐文杰 张海洋 +1 位作者 介玉新 于玉贞 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期619-630,共12页
The mesoscopic failure mechanism and the macro-mechanical characteristics of soil-rock mixture(S-RM) under external load are largely controlled by S-RM's meso-structural features. The objective of this work is to ... The mesoscopic failure mechanism and the macro-mechanical characteristics of soil-rock mixture(S-RM) under external load are largely controlled by S-RM's meso-structural features. The objective of this work is to improve the three-dimensional technology for the generation of the random meso-structural models of S-RM, for randomly generating irregular rock blocks in S-RM with different shapes, sizes, and distributions according to the characteristics of the rock blocks' size distribution. Based on the new improved technology, a software system named as R-SRM3 D for generation and visualization of S-RM is developed. Using R-SRM3 D, a three-dimensional meso-structural model of S-RM is generated and used to study the meso-mechanical behavior through a series of true-triaxial numerical tests. From the numerical tests, the following conclusions are obtained. The meso-stress field of S-RM is influenced by the distribution of the internal rock blocks, and the macro-mechanical characteristics of S-RM are anisotropic in 3D; the intermediate principal stress and the soil-rock interface properties have significant influence on the macro strength of S-RM. 展开更多
关键词 三维随机 细观结构 数值试验 结构力学 混合 土石 可视化软件系统 发电
下载PDF
Numerical analysis of soil-rock mixture's meso-mechanics based on biaxial test 被引量:2
11
作者 张海洋 徐文杰 于玉贞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期685-700,共16页
Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-struc... Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-structural characteristics of S-RM. The objective of this work was to study the control mechanism of meso-structural characteristics on mechanical properties of S-RM. For S-RM containing randomly generated polygonal rock blocks, a series of biaxial tests based on DEM were conducted. On the basis of research on the effects of rock blocks' breakability and sample lateral boundary type(rigid, flexible) on macroscopic mechanical behavior of S-RM, an expanded Mohr-Coulomb criterion in power function form was proposed to represent the strength envelop. At the mesoscopic level, the variations of meso-structure such as rotation of rock block, and the formation mechanism and evolution process of the shear band during tests were investigated. The results show that for S-RM with a high content of rock block, translation, rotating and breakage of rock blocks have crucial effects on mechanical behavior of S-RM. The formation and location of the shear band inside S-RM sample are also controlled by breakability and arrangement of rock blocks. 展开更多
关键词 细观力学 土石混合料 MOHR-COULOMB准则 数值分析 试验 双轴 土石混合体 细观结构
下载PDF
Joint Effects of Multipollutant Mixtures on Mortality in Chengdu,China
12
作者 ZHANG Ying TIAN Qi Qi +3 位作者 HU Wen Dong ZHANG Shao Bo WANG Shi Gong ZHENG Can Jun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期112-116,共5页
Significant epidemiological research has revealed that exposure to air pollution is substantially associated with numerous detrimental health consequences^([1-3]).The negative health effects of individual air pollutan... Significant epidemiological research has revealed that exposure to air pollution is substantially associated with numerous detrimental health consequences^([1-3]).The negative health effects of individual air pollutants(e.g.,fine particulate matter:PM_(2.5);nitrogen dioxide:NO_(2);carbon monoxide,CO;or ozone:O_(3))have been widely explored^([4]).However,humans are constantly exposed to multipollutant mixtures in real life,and biological responses to inhaled pollutants are likely to depend on the interplay of pollutant mixtures.Therefore,it is critical and imperative to explore the joint effects of multipollutant mixtures on human beings. 展开更多
关键词 mixtureS MONOXIDE consequences
下载PDF
Optimization of Biofuel Formulation by Mixture Design
13
作者 Konan Edmond Kouassi Abollé Abollé +3 位作者 Kouamé Olivier-Marc Kouakou David Boa N’guessan Raymond Kré Kouassi Benjamin Yao 《Advances in Chemical Engineering and Science》 CAS 2024年第1期48-56,共9页
With the full growth of energy needs in the world, several studies are now focused on finding renewable sources. The aim of this work is to optimise biofuel formulation from a mixture design by studying physical prope... With the full growth of energy needs in the world, several studies are now focused on finding renewable sources. The aim of this work is to optimise biofuel formulation from a mixture design by studying physical properties, such as specific gravity and kinematic viscosity of various formulated mixtures. Optimization from the mixture plan revealed that in the chosen experimental domain, the optimal conditions are: 40% for used frying oil (UFO), 50% for bioethanol and 10% for diesel. These experimental conditions lead to a biofuel with a density of 0.84 and a kinematic viscosity of 2.97 cSt. These parameters are compliant with the diesel quality certificate in tropical areas. These density and viscosity values were determined according to respective desirability values of 0.68 and 0.75. 展开更多
关键词 BIOFUEL OPTIMIZATION mixture Design
下载PDF
Optimal preparation of Bose and Fermi atomic gas mixtures of ^(87)Rb and ^(40)K in a crossed optical dipole trap
14
作者 丁培波 单标 +5 位作者 赵宇航 杨雅婧 陈良超 孟增明 王鹏军 黄良辉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期356-361,共6页
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st... We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K. 展开更多
关键词 optical dipole trap Bose and Fermi gas mixtures atomic lifetime
下载PDF
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
15
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function Finite mixture model Linear seemingly unrelated regression Back propagation neural network Carbon storage
下载PDF
Sensing the heavy water concentration in an H_(2)O-D_(2)O mixture by solid-solid phononic crystals
16
作者 Mohammadreza Rahimi Ali Bahrami 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期493-498,共6页
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10... A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor. 展开更多
关键词 phononic crystals sensor H_(2)O-D_(2)O mixture CAVITY
下载PDF
A Bayesian Mixture Model Approach to Disparity Testing
17
作者 Gary C. McDonald 《Applied Mathematics》 2024年第3期214-234,共21页
The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the unc... The topic of this article is one-sided hypothesis testing for disparity, i.e., the mean of one group is larger than that of another when there is uncertainty as to which group a datum is drawn. For each datum, the uncertainty is captured with a given discrete probability distribution over the groups. Such situations arise, for example, in the use of Bayesian imputation methods to assess race and ethnicity disparities with certain insurance, health, and financial data. A widely used method to implement this assessment is the Bayesian Improved Surname Geocoding (BISG) method which assigns a discrete probability over six race/ethnicity groups to an individual given the individual’s surname and address location. Using a Bayesian framework and Markov Chain Monte Carlo sampling from the joint posterior distribution of the group means, the probability of a disparity hypothesis is estimated. Four methods are developed and compared with an illustrative data set. Three of these methods are implemented in an R-code and one method in WinBUGS. These methods are programed for any number of groups between two and six inclusive. All the codes are provided in the appendices. 展开更多
关键词 Bayesian Improved Surname and Geocoding (BISG) mixture Likelihood Function Posterior Distribution Metropolis-Hastings Algorithms Random Walk Chain Independence Chain Gibbs Sampling WINBUGS
下载PDF
Multiscale Study on Low Temperature Crack Resistance Mechanism of Steel Slag Asphalt Mixture
18
作者 白雪峰 王岚 CHEN Xiunan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期705-715,共11页
The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to eva... The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to evaluate the low-temperature crack resistance of SAM and basalt asphalt mixture(BAM).Based on the digital image correlation technique(DIC),the strain field distribution and crack propagation of SAM were analyzed from the microscopic point of view,and a new index,crack length factor(C),was proposed to evaluate the crack resistance of the asphalt mixture.The crystal phase composition and microstructure of steel slag aggregate(SA)and basalt aggregate(BA)were studied by X-ray diffraction(XRD)and scanning electron microscopy(SEM)to explore the low-temperature crack resistance mechanism of SAM.Results show that the low-temperature crack resistance of SAM is better than that of BAM;SAM has good integrity and persistent elastic deformation,and its bending failure mode is a hysteretic quasi-brittle failure;The SA surface is evenly distributed with pores and has surface roughness.SA has the composition phase of alkaline aggregate-calcite(CaCO3),so it has good adhesion to asphalt,which reveals the mechanism of excellent low-temperature crack resistance of SAM. 展开更多
关键词 steel slag asphalt mixture ·low-temperature crack resistance ·strain energy density ·XRD SEM
下载PDF
Long-term performance of recycled asphalt mixtures containing high RAP and RAS
19
作者 Jiangmiao Yu Zengyao Lin +3 位作者 Guilian Zou Huayang Yu Zhen Leng Yuan Zhang 《Journal of Road Engineering》 2024年第1期36-53,共18页
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ... The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS. 展开更多
关键词 Recycled asphalt mixture Recycling agents Long-term performance CRACKING
下载PDF
Thermodynamic Performance Analysis of Geothermal Power Plant Based on Organic Rankine Cycle (ORC) Using Mixture of Pure Working Fluids
20
作者 Abdul Sattar Laghari Mohammad Waqas Chandio +1 位作者 Laveet Kumar Mamdouh El Haj Assad 《Energy Engineering》 EI 2024年第8期2023-2038,共16页
The selection of working fluid significantly impacts the geothermal ORC’s Efficiency.Using a mixture as a working fluid is a strategy to improve the output of geothermal ORC.In the current study,modelling and thermod... The selection of working fluid significantly impacts the geothermal ORC’s Efficiency.Using a mixture as a working fluid is a strategy to improve the output of geothermal ORC.In the current study,modelling and thermodynamic analysis of ORC,using geothermal as a heat source,is carried out at fixed operating conditions.The model is simulated in the Engineering Equation Solver(EES).An environment-friendly mixture of fluids,i.e.,R245fa/R600a,with a suitable mole fraction,is used as the operating fluid.The mixture provided the most convenient results compared to the pure working fluid under fixed operating conditions.The impact of varying the evaporator pressure on the performance parameters,including energy efficiency,exergy efficiency and net power output is investigated.The system provided the optimal performance once the evaporator pressure reached the maximum value.The efficiencies:Energy and Exergy,and Net Power output of the system are 16.62%,64.08%and 2199 kW for the basic cycle and 20.72%,67.76%and 2326 kW respectively for the regenerative cycle. 展开更多
关键词 Organic rankine cycle internal heat exchanger moderate-temperature geothermal source mixture of the fluid EXERGY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部