As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The ...As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were per...In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.展开更多
The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soi...The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.展开更多
The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solve...The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solved in time or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D Horizontal type Infinite Elements (HIE) is demonstrated here, but by similar techniques 2D Vertical (VIE) and 2D Comer (CIE) Infinite Elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamic infinite elements in the Finite Element Method (FEM) is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.展开更多
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of th...As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.展开更多
To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted...To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted.Based on the test results and the existing related studies,an efficient simplified model and a corresponding calculation method are verified for estimating the dynamic characteristics of a base-isolated structure with buried footings on a pile foundation with the SSI effect.In this method,the solutions by Veletsos and co-workers for a non-isolated structure with the SSI effect are verified and advanced for a base-isolated structure,and the solutions by Maravas and co-workers for a non-isolated structure on a pile foundation are introduced to consider the effect of the piles.By comparison with the shake table test,this work proves that the simplified method can efficiently estimate the dynamic responses of a base-isolated structure with buried footings on a pile foundation.Using parameter analysis,this work also shows that the dynamic characteristics of a non-isolated structure are quite similar to those of the base-isolated structure when the soil foundation is sufficiently soft,which means that the isolation layer gradually loses its isolation function as the soil foundation softens.展开更多
In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results ...In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.展开更多
The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and ...The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and backward movements of the abutment in response to the expansion/contraction of the bridge deck lead to the formation of settlement trough and surface heaving,frequently creating a bump at the bridge approach and increasing the lateral earth pressure behind the abutment.Measures to reduce the bump at the bridge approach,including several treatment methods,such as compaction of selected backfill materials,grout injection,installation of approach slab,and using a layer of compressible inclusion material behind the abutment were proposed.However,these guidelines still lack sufficient design details and there are limited experimental findings to validate design assumptions.In this paper,the use of engineered compressible materials to alleviate the lateral earth pressure ratcheting and settlement at the bridge approach is investigated.The comparative study is presented for the soil-inclusion,material-structure and soil-structure interactions for an integral bridge under three different backfill conditions,i.e.(a)sand,(b)sand and EPS geofoam,and(c)sand and Infinergy®.The study was conducted in a special large-scale test chamber with a semi-scale abutment to gain better insights into the soil-structure interaction(SSI).The kinematics and rearrangement of the soil during the cyclic loading have been investigated to identify the mitigating effects of compressible inclusions.The comparative study indicates that both compressible inclusions perform comparatively well,however,Infinergy®is a better alternative than the medium-density EPS geofoam,as it works more effectively to reduce the backfill settlement and heaving as well as soil ratcheting effects under cyclic translational movement.展开更多
: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic m...: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.展开更多
The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the d...The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the dynamic inertia matrix for the single-base system, is extended for the multiply-supported systems. Modal analysis is performed twice: once for the structural model with one base fixed, then for the same model with all bases fixed. The applicability of the proposed approach is checked for a sample two-base system enabling analytical solutions both in precise and modal approaches. The format of the condensed dynamic stiffness in the frequency domain enables to combine finite-element-method (FEM) codes like ABAQUS and Soil-Structure Interaction (SSI) codes like SASSI or CLASSI in a complex to perform effective soil-structure interaction analysis.展开更多
This paper represents a simplified seismic fragility analysis approach of the underground tunnel structure in consideration of the soil-structure interaction (SSI) effect. SSI effect founds to be essential in the esti...This paper represents a simplified seismic fragility analysis approach of the underground tunnel structure in consideration of the soil-structure interaction (SSI) effect. SSI effect founds to be essential in the estimation of dynamic analysis of underground structures like tunnels and thus needs to be considered. The ground response acceleration method for buried structures (GRAMBS) known to be a very efficient quasi-static method that can consider SSI effect is used in the proposed approach to evaluate seismic structural responses without sacrificing much accuracy. Seismic fragility curves are then developed by applying the maximum likelihood estimates (MLE) to responses of a large set of artificial ground motion time histories generated for multiple different levels of earthquake intensity. It is also assumed in this paper that the seismic fragility curve can be represented by a two-parameter lognormal distribution function with median and log-standard deviation that need to be defined using MLE.展开更多
A simplified and efficient procedure, based on the viscous-spring artificial boundary and the modal superposition method, is developed to analyze the dynamic soil-structure interaction system in the time domain. The v...A simplified and efficient procedure, based on the viscous-spring artificial boundary and the modal superposition method, is developed to analyze the dynamic soil-structure interaction system in the time domain. The viscous-spring artificial boundary introduced in this procedure transforms the infinite soil-structure interaction system to an approximately finite system. A seismic wave input method is used to transform the wave scattering problem into the wave source problem. The modal superposition method is then applied to this approximate finite system. The results show that this method with only a few modes can significantly reduce the computational time with almost the same precision as the traditional direct integration method. Comparison of results from different loading times demonstrates that the advantages of this method are evident in computing with long loading time.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
Currently, land resources are becoming more and more constrained and structures are getting closer to each other. To investigate the seismic response of inter-story isolated structure to adjacent structure, models con...Currently, land resources are becoming more and more constrained and structures are getting closer to each other. To investigate the seismic response of inter-story isolated structure to adjacent structure, models considering no soil-structure interaction (SSI), considering soil-structure interaction (SSI), and considering structure-soil-structure interaction (SSSI) were established. Nonlinear seismic response comparative analysis was conducted by varying the spacing between adjacent structure and inter-story isolated structure, as well as the weight of adjacent structure, under different earthquake inputs, in order to obtain the structural response characteristics. The results indicate that the inter-story drift and inter-story shear of the inter-story isolated structure without considering SSI are smaller than those considering SSI and SSSI. The inter-story drift and inter-story shear of the inter-story isolated structure considering SSSI are further affected compared to that of the inter-story isolated structure considering only SSI. As the spacing between adjacent structure and inter-story isolated structure increases, the influence of adjacent structure on inter-story isolated structure decreases. The variation in the spacing between the two structures has a negligible effect on the isolation layer of the inter-story isolated structure. With the increase in the weight of adjacent structure, the influence of adjacent structure on inter-story isolated structure becomes more significant. The increasing weight of adjacent structure has an increasing effect on the Isolation layer of the inter-story isolated structure.展开更多
基金This work was financed by The Natural Sciences and Engineering Research Council of Canada(NSERC)and Hydro-Québec Transénergy(HQTE).
文摘As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
文摘In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.
文摘The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.
文摘The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solved in time or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D Horizontal type Infinite Elements (HIE) is demonstrated here, but by similar techniques 2D Vertical (VIE) and 2D Comer (CIE) Infinite Elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamic infinite elements in the Finite Element Method (FEM) is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.
文摘As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.
基金funded by the National Natural Science Foundation of China(No.51778282)the Science Research Foundations of Nanjing Institute of Technology(CKJA201505,JCYJ201618)
文摘To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted.Based on the test results and the existing related studies,an efficient simplified model and a corresponding calculation method are verified for estimating the dynamic characteristics of a base-isolated structure with buried footings on a pile foundation with the SSI effect.In this method,the solutions by Veletsos and co-workers for a non-isolated structure with the SSI effect are verified and advanced for a base-isolated structure,and the solutions by Maravas and co-workers for a non-isolated structure on a pile foundation are introduced to consider the effect of the piles.By comparison with the shake table test,this work proves that the simplified method can efficiently estimate the dynamic responses of a base-isolated structure with buried footings on a pile foundation.Using parameter analysis,this work also shows that the dynamic characteristics of a non-isolated structure are quite similar to those of the base-isolated structure when the soil foundation is sufficiently soft,which means that the isolation layer gradually loses its isolation function as the soil foundation softens.
文摘In this paper, a new method called dynamic finite layer--element method (DFLEM) is used to analyse the soil--structure interaction of new type offshore platforms. Some valuable results have been obtained. The results show that the DFLEM is a new effective method to analyse dynamic soil--structure interaction and can be applied widely in practice.
基金The authors gratefully acknowledge and thank BASF for providing the Infinergymaterial used in this research.The continuous technical support provided by Mr.Van Doan and Advanced Materials Characterisation Facility(AMCF)at Western Sydney University(WSU)are also gratefully acknowledged.This research is supported by the Graduate student research fund of WSU.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and backward movements of the abutment in response to the expansion/contraction of the bridge deck lead to the formation of settlement trough and surface heaving,frequently creating a bump at the bridge approach and increasing the lateral earth pressure behind the abutment.Measures to reduce the bump at the bridge approach,including several treatment methods,such as compaction of selected backfill materials,grout injection,installation of approach slab,and using a layer of compressible inclusion material behind the abutment were proposed.However,these guidelines still lack sufficient design details and there are limited experimental findings to validate design assumptions.In this paper,the use of engineered compressible materials to alleviate the lateral earth pressure ratcheting and settlement at the bridge approach is investigated.The comparative study is presented for the soil-inclusion,material-structure and soil-structure interactions for an integral bridge under three different backfill conditions,i.e.(a)sand,(b)sand and EPS geofoam,and(c)sand and Infinergy®.The study was conducted in a special large-scale test chamber with a semi-scale abutment to gain better insights into the soil-structure interaction(SSI).The kinematics and rearrangement of the soil during the cyclic loading have been investigated to identify the mitigating effects of compressible inclusions.The comparative study indicates that both compressible inclusions perform comparatively well,however,Infinergy®is a better alternative than the medium-density EPS geofoam,as it works more effectively to reduce the backfill settlement and heaving as well as soil ratcheting effects under cyclic translational movement.
基金the State Key Program of the National Natural Science Fundation of China under Grant No.51138001the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51421064+2 种基金the State Key Laboratory of Coastal and Offshore Engineering Young Scholars Innovation Fund(LY1609)the Fundamental Research Funds for the Central Universities under Grant No.DUT15TD17the Open Research Fund of Hunan Province Key Laboratory of Key Technologies for Water Power Resources Development under Grant No.PKLHD20130
文摘: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.
文摘The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the dynamic inertia matrix for the single-base system, is extended for the multiply-supported systems. Modal analysis is performed twice: once for the structural model with one base fixed, then for the same model with all bases fixed. The applicability of the proposed approach is checked for a sample two-base system enabling analytical solutions both in precise and modal approaches. The format of the condensed dynamic stiffness in the frequency domain enables to combine finite-element-method (FEM) codes like ABAQUS and Soil-Structure Interaction (SSI) codes like SASSI or CLASSI in a complex to perform effective soil-structure interaction analysis.
文摘This paper represents a simplified seismic fragility analysis approach of the underground tunnel structure in consideration of the soil-structure interaction (SSI) effect. SSI effect founds to be essential in the estimation of dynamic analysis of underground structures like tunnels and thus needs to be considered. The ground response acceleration method for buried structures (GRAMBS) known to be a very efficient quasi-static method that can consider SSI effect is used in the proposed approach to evaluate seismic structural responses without sacrificing much accuracy. Seismic fragility curves are then developed by applying the maximum likelihood estimates (MLE) to responses of a large set of artificial ground motion time histories generated for multiple different levels of earthquake intensity. It is also assumed in this paper that the seismic fragility curve can be represented by a two-parameter lognormal distribution function with median and log-standard deviation that need to be defined using MLE.
基金Supported by the National Key Basic Research and Development (973) Program of China (No. 2002CB412706), the National Natu-ral Science Foundation of China (No. 50478014), and the Beijing Natural Science Foundation (No. 8061003)
文摘A simplified and efficient procedure, based on the viscous-spring artificial boundary and the modal superposition method, is developed to analyze the dynamic soil-structure interaction system in the time domain. The viscous-spring artificial boundary introduced in this procedure transforms the infinite soil-structure interaction system to an approximately finite system. A seismic wave input method is used to transform the wave scattering problem into the wave source problem. The modal superposition method is then applied to this approximate finite system. The results show that this method with only a few modes can significantly reduce the computational time with almost the same precision as the traditional direct integration method. Comparison of results from different loading times demonstrates that the advantages of this method are evident in computing with long loading time.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
文摘Currently, land resources are becoming more and more constrained and structures are getting closer to each other. To investigate the seismic response of inter-story isolated structure to adjacent structure, models considering no soil-structure interaction (SSI), considering soil-structure interaction (SSI), and considering structure-soil-structure interaction (SSSI) were established. Nonlinear seismic response comparative analysis was conducted by varying the spacing between adjacent structure and inter-story isolated structure, as well as the weight of adjacent structure, under different earthquake inputs, in order to obtain the structural response characteristics. The results indicate that the inter-story drift and inter-story shear of the inter-story isolated structure without considering SSI are smaller than those considering SSI and SSSI. The inter-story drift and inter-story shear of the inter-story isolated structure considering SSSI are further affected compared to that of the inter-story isolated structure considering only SSI. As the spacing between adjacent structure and inter-story isolated structure increases, the influence of adjacent structure on inter-story isolated structure decreases. The variation in the spacing between the two structures has a negligible effect on the isolation layer of the inter-story isolated structure. With the increase in the weight of adjacent structure, the influence of adjacent structure on inter-story isolated structure becomes more significant. The increasing weight of adjacent structure has an increasing effect on the Isolation layer of the inter-story isolated structure.