It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results ...It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results can be used to deduce the SWRC(termed SWRCMIP).However,SWRCMIP does not include the effect of volume change,compared with the conventional SWRC that is directly determined by suction measurement or suction control techniques.For deformable soils,there is a significant difference between conventional SWRC and SWRCMIP.In this study,drying test was carried out on a reconstituted silty soil,and the volume change,suction,and PSD were measured on samples with different water contents.The change in the deduced SWRCMIP and its relationship with the conventional SWRC were analyzed.The results showed that the volume change of soil is the main reason accounting for the difference between conventional SWRC and SWRCMIP.Based on the test results,a transformation model was then proposed for conventional SWRC and SWRCMIP,for which the soil state with no volume change is taken as a reference.Comparison between the experimental and predicted SWRCs showed that the proposed model can well consider the influence of soil volume change on its water retention property.展开更多
In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are gene...In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are generally intermittent and random,hindering their wide application[2,3].To address this problem,there is an urgent need in effective and reliable energy storage device.展开更多
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained ...The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.展开更多
Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively...Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
It is well known that air in industrial cities contains a significant amount of dust particles, smoke, and toxic gases. The increased number of vehicles has a direct impact on air quality resulting in the emission of ...It is well known that air in industrial cities contains a significant amount of dust particles, smoke, and toxic gases. The increased number of vehicles has a direct impact on air quality resulting in the emission of exhaust gases, and the increase of dust concentration in air. In this article, we are describing the dust retention ability of plants depending on their leaf structure. Plant species were classified into three groups according to their dust-holding capacities. Dust retaining ability of plant species in conditions of high, average and low dust conditions described.展开更多
The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relat...The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relationships between the logarithm of capacity factor lgK' and methanol ratio ψ were analyzed. A fair linear relationship is found between lgK' and ψ, and the correlation coefficients R2 of the constructed linear equations are all greater than 0.990. Relationship between the chromatographic data lgKw' when extrapolated to pure water and n-octanol/water partition coefficient lgKow obtained by the group contribution method has shown a good linear correlation with R2= 0.956. The structure parameters of fourteen halogenated thiophenols were calculated by using DFT, and the correlation equation of lgKw' and structure parameters was obtained by using SPSS, lgKw' = -0.409 + 0.039a and R2 = 0.981, meaning that lgKw' is mainly determined by the polarizability α.展开更多
Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of C...Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of CEC of zeolites. We determined CEC of Linde-type A and Na-P1 type zeolites at various pH (4 to 10) with a simple method, where Na+-saturated zeolites were prepared, and then various amounts of HCl were added. CEC was simply calculated by subtracting the amount of Na+ in the final supernatant from the content of Na+ of the Na+-saturated zeolites. CEC of the zeolites decreased with decreasing pH and with decreasing Na+ concentration of the final supernatant. The concentration of Na+ of the supernatant, CEC of the zeolites began to decrease at weakly alkaline or neutral pH, and that of the Linde-type A zeolite became about half at pH around 6. When CEC was plotted against pH-pNa;where pNa is negative logarithm of the activity of Na+;CEC of each zeolite was expressed by a curve. It indicates that the CEC or the amount of Na+ retention is univocally determined by the ratio of activities of Na+ and proton.展开更多
Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlatio...Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlation between the parameters of chromatograph capacity factor (CCF) and molecular structural parameters. As a result, the correlation equation of the reversed phased high performance liquid chromatograph capacity factor to the intercept lgk'w and slope S of CCF were obtained, from which the correlation coefficients of lgk'w to the structural parameters are r^2 = 0.9596 and q^2 = 0.9262. While the correlation coefficients of the parameter S r^2 q^2 with structures are = 0.9750 and = 0.9252. Moreover, the effect of water as solvent on the present two models was also considered using SCRF method, and the result shows that the predicting capacity of correlation equation of lgkw' increases, while that of the model for S decreases slightly. Both two correlation equations achieved in this work are more advantageous than those using theoretical descriptors from molecular connectivity indices.展开更多
Soil organic carbon (SOC) retaining capacities of epipedon (EP), subsoil (SS) and soil cover (SC) as a whole, are soil type specific. Depending on individual and sites characteristics, the generalized humus status ind...Soil organic carbon (SOC) retaining capacities of epipedon (EP), subsoil (SS) and soil cover (SC) as a whole, are soil type specific. Depending on individual and sites characteristics, the generalized humus status indices of soil types (EP and SC thickness and SOC stocks) may vary. Land use and land use change primarily influence the properties and fabric of the EP, but the humus status (SOC concentration and stock, fabric of horizons) of the SS remains practically unchangeable. The mean mineral soils SOC stocks, EP quality and SOC distribution in soil profiles depend mainly on the water regime, mineral composition (texture, calcareousness), development of eluvial processes and the land use peculiarities of soils. The mean area weighted SC SOC stock of Estonian mineral soils is 99.9 Mg ha–1, thereby the mean hydromorphic soils SOC retention capacity considerably exceeds the SOC retention capacity of automorphic soils (means are accordingly 127.5 and 78.9 Mg ha–1). The sustainable management of SOC is based on adequate information about actual SOC stocks and theoretically established or optimal humus status levels of soil types. The aggregate of SOC retained in the mineral soils of Estonia (3,235,100 ha) amounts to 323 ± 46 Tg (1 Tg = 1012 g). Approximately 42% of this is sequestered into stabilized humus, 40% into instable raw-humous material and 18% into forest (grassland) floor and shallow peat layers.展开更多
Biochar has the potential to provide a multitude of benefits when used in soil remediation and increasing soil organic matter enrichment.Nevertheless,the intricated,hydrophobic pores and groups weaken its water-holdin...Biochar has the potential to provide a multitude of benefits when used in soil remediation and increasing soil organic matter enrichment.Nevertheless,the intricated,hydrophobic pores and groups weaken its water-holding capacity in dry,sandy soils in arid lands.In order to combat this issue,starch-carbon-based material(SB),sodium alginate-carbon-based material(SAB),and chitosan-carbon-based material(CB)have been successfully synthesized through the graft-polymerization of biochar(BC).A series of soil column simulations were used to scrutinize the microstructure of the carbon-based material and explore its water absorption properties and its effects on sandy soil water infiltration,water retention,and aggregation.The results indicated that SB,SAB,and CB achieved water maximum absorption rates of 155,188,and 172 g g^(−1),respectively.Considering their impact on sandy soils,SB,SAB,and CB lengthened infiltration times by 1920,3330,and 3880 min,respectively,whilst enhancing the water retention capabilities of the soil by 18%,25%,and 23%in comparison to solely adding BC.The utilization of these innovative materials notably encouraged the formation of sandy soil aggregates ranging from 2.0 to 0.25 mm,endowing the aggregates with enhanced structural stability.Findings from potting experiments suggested that all three carbonbased materials were conducive to the growth of soybean seeds.Thus,it is evident that the carbon-based materials have been fabricated with success,and they have great potential not only to significantly augment the water retention capacities and structural robustness of sandy soils in arid areas,but also to bolster the development of soil aggregates and crop growth.These materials possess significant application potential for enhancing the quality of sandy soils in arid and semi-arid regions.展开更多
Rubble deposits with a high concentration of rock debris were created after the powerful earthquakes in Jiuzhaigou.Because of the restricted soil resources,water leaks,and nutrient deficits,these deposits pose serious...Rubble deposits with a high concentration of rock debris were created after the powerful earthquakes in Jiuzhaigou.Because of the restricted soil resources,water leaks,and nutrient deficits,these deposits pose serious obstacles for vegetation regeneration.The purpose of this study was to investigate the main mechanisms controlling soil water retention and evaluate the effects of different amendments on the hydraulic characteristics and water-holding capacity of collapsed rubble soils.Finegrained soil,forest humus,crushed straw,and organic components that retain water were added to the altered soils to study the pore structure images and soil-water characteristic curves.Comparing understory humus to other supplements,the results showed a considerable increase in the soil's saturated and wilting water content.The saturated water content and wilting water content rose by 17.9%and 4.3%,respectively,when the percentage of understory soil reached 30%.Additionally,the enhanced soil's microporosity and total pore volume increased by 45.33%and 11.27%,respectively,according to nuclear magnetic imaging.It was shown that while clay particles and organic matter improved the soil's ability to adsorb water,they also increased the soil's total capacity to store water.Fine particulate matter did this by decreasing macropores and increasing capillary pores.These results offer an essential starting point for creating strategies for soil repair that would encourage the restoration of plants on slopes that have been damaged.展开更多
基金Shanghai Key Innovative Team of Cultural Heritage Conservation and the financial support from the National Sciences Foundation of China(Grant Nos.41977214 and 41572284)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z013008)。
文摘It is well-known that a close link exists between soil-water retention curve(SWRC)and pore size distribution(PSD).Theoretically,mercury intrusion porosimetry(MIP)test simulates a soil drying path and the test results can be used to deduce the SWRC(termed SWRCMIP).However,SWRCMIP does not include the effect of volume change,compared with the conventional SWRC that is directly determined by suction measurement or suction control techniques.For deformable soils,there is a significant difference between conventional SWRC and SWRCMIP.In this study,drying test was carried out on a reconstituted silty soil,and the volume change,suction,and PSD were measured on samples with different water contents.The change in the deduced SWRCMIP and its relationship with the conventional SWRC were analyzed.The results showed that the volume change of soil is the main reason accounting for the difference between conventional SWRC and SWRCMIP.Based on the test results,a transformation model was then proposed for conventional SWRC and SWRCMIP,for which the soil state with no volume change is taken as a reference.Comparison between the experimental and predicted SWRCs showed that the proposed model can well consider the influence of soil volume change on its water retention property.
基金financially supported by the National Natural Science Foundation of China(Grant No.21935003 and 21908217)DICP I201928+1 种基金the China Postdoctoral Science Foundation(No.2019M651158)the CAS Engineering Laboratory for Electrochemical Energy Storage。
文摘In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are generally intermittent and random,hindering their wide application[2,3].To address this problem,there is an urgent need in effective and reliable energy storage device.
基金Supported by the National Natural Science Foundation of China(No.51409261)
文摘The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.
基金Projects(40772180, 40572161, 40802064) supported by the National Natural Science Foundation of ChinaProject ([2007]831) supported by Commission of Science, Technology and Industry for National Defense of China+3 种基金Project(07JJ4012) supported by Hunan Provincial Natural Science Foundation of ChinaProject(20080430680) supported by China Postdoctoral Science FoundationProject(08R214155) supported by Shanghai Postdoctoral Scientific Program of ChinaProject(B308) supported by Shanghai Leading Academic Discipline Project of China
文摘Laboratory tests under different constraint conditions were carried out to obtain the soil-water retention curves(SWRCs) of highly-compacted confined/unconfined Gaomiaozi(GMZ) bentonite at 20,40 and 80 ℃,respectively. The effect of temperature on the soil-water characteristics of the highly-compacted GMZ bentonite was analyzed. The results show that the water retention capacity of the highly-compacted GMZ bentonite decreases as the temperature increases under unconfined and confined conditions. At a certain temperature,the constraint conditions have little influence on the water retention capacity of the compacted bentonite at high suction,but the water retention capacity of the confined specimen is lower than that of the unconfined specimen at low suction. Under unconfined conditions,the hysteretic behaviour of the compacted bentonite decreases with increasing temperature. At high suction(>4 MPa) ,the hysteretic behaviour of the unconfined bentonite tends to increase with the decrease of the suction. In summary,the hysteretic behaviour of the compacted bentonite is not significant.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
文摘It is well known that air in industrial cities contains a significant amount of dust particles, smoke, and toxic gases. The increased number of vehicles has a direct impact on air quality resulting in the emission of exhaust gases, and the increase of dust concentration in air. In this article, we are describing the dust retention ability of plants depending on their leaf structure. Plant species were classified into three groups according to their dust-holding capacities. Dust retaining ability of plant species in conditions of high, average and low dust conditions described.
文摘The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relationships between the logarithm of capacity factor lgK' and methanol ratio ψ were analyzed. A fair linear relationship is found between lgK' and ψ, and the correlation coefficients R2 of the constructed linear equations are all greater than 0.990. Relationship between the chromatographic data lgKw' when extrapolated to pure water and n-octanol/water partition coefficient lgKow obtained by the group contribution method has shown a good linear correlation with R2= 0.956. The structure parameters of fourteen halogenated thiophenols were calculated by using DFT, and the correlation equation of lgKw' and structure parameters was obtained by using SPSS, lgKw' = -0.409 + 0.039a and R2 = 0.981, meaning that lgKw' is mainly determined by the polarizability α.
文摘Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of CEC of zeolites. We determined CEC of Linde-type A and Na-P1 type zeolites at various pH (4 to 10) with a simple method, where Na+-saturated zeolites were prepared, and then various amounts of HCl were added. CEC was simply calculated by subtracting the amount of Na+ in the final supernatant from the content of Na+ of the Na+-saturated zeolites. CEC of the zeolites decreased with decreasing pH and with decreasing Na+ concentration of the final supernatant. The concentration of Na+ of the supernatant, CEC of the zeolites began to decrease at weakly alkaline or neutral pH, and that of the Linde-type A zeolite became about half at pH around 6. When CEC was plotted against pH-pNa;where pNa is negative logarithm of the activity of Na+;CEC of each zeolite was expressed by a curve. It indicates that the CEC or the amount of Na+ retention is univocally determined by the ratio of activities of Na+ and proton.
基金This work was supported by the National Basic Research Program of China (2003CB415002) and the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu (04KJB150149)
文摘Sixteen indole derivatives have been computed at B3LYP/6-31 IG^** level using density functional theory (DFF). Based on linear solvation energy theory, the structural parameters were employed to present correlation between the parameters of chromatograph capacity factor (CCF) and molecular structural parameters. As a result, the correlation equation of the reversed phased high performance liquid chromatograph capacity factor to the intercept lgk'w and slope S of CCF were obtained, from which the correlation coefficients of lgk'w to the structural parameters are r^2 = 0.9596 and q^2 = 0.9262. While the correlation coefficients of the parameter S r^2 q^2 with structures are = 0.9750 and = 0.9252. Moreover, the effect of water as solvent on the present two models was also considered using SCRF method, and the result shows that the predicting capacity of correlation equation of lgkw' increases, while that of the model for S decreases slightly. Both two correlation equations achieved in this work are more advantageous than those using theoretical descriptors from molecular connectivity indices.
基金Funding for the research was provided by the Estonian Ministry of Education and Research(Project No.0172613AGML03).
文摘Soil organic carbon (SOC) retaining capacities of epipedon (EP), subsoil (SS) and soil cover (SC) as a whole, are soil type specific. Depending on individual and sites characteristics, the generalized humus status indices of soil types (EP and SC thickness and SOC stocks) may vary. Land use and land use change primarily influence the properties and fabric of the EP, but the humus status (SOC concentration and stock, fabric of horizons) of the SS remains practically unchangeable. The mean mineral soils SOC stocks, EP quality and SOC distribution in soil profiles depend mainly on the water regime, mineral composition (texture, calcareousness), development of eluvial processes and the land use peculiarities of soils. The mean area weighted SC SOC stock of Estonian mineral soils is 99.9 Mg ha–1, thereby the mean hydromorphic soils SOC retention capacity considerably exceeds the SOC retention capacity of automorphic soils (means are accordingly 127.5 and 78.9 Mg ha–1). The sustainable management of SOC is based on adequate information about actual SOC stocks and theoretically established or optimal humus status levels of soil types. The aggregate of SOC retained in the mineral soils of Estonia (3,235,100 ha) amounts to 323 ± 46 Tg (1 Tg = 1012 g). Approximately 42% of this is sequestered into stabilized humus, 40% into instable raw-humous material and 18% into forest (grassland) floor and shallow peat layers.
基金Bingtuan Science and Technology Program(2021DB019,2022CB001-01,2022CB001-07)National Natural Science Foundation of China(42275014).
文摘Biochar has the potential to provide a multitude of benefits when used in soil remediation and increasing soil organic matter enrichment.Nevertheless,the intricated,hydrophobic pores and groups weaken its water-holding capacity in dry,sandy soils in arid lands.In order to combat this issue,starch-carbon-based material(SB),sodium alginate-carbon-based material(SAB),and chitosan-carbon-based material(CB)have been successfully synthesized through the graft-polymerization of biochar(BC).A series of soil column simulations were used to scrutinize the microstructure of the carbon-based material and explore its water absorption properties and its effects on sandy soil water infiltration,water retention,and aggregation.The results indicated that SB,SAB,and CB achieved water maximum absorption rates of 155,188,and 172 g g^(−1),respectively.Considering their impact on sandy soils,SB,SAB,and CB lengthened infiltration times by 1920,3330,and 3880 min,respectively,whilst enhancing the water retention capabilities of the soil by 18%,25%,and 23%in comparison to solely adding BC.The utilization of these innovative materials notably encouraged the formation of sandy soil aggregates ranging from 2.0 to 0.25 mm,endowing the aggregates with enhanced structural stability.Findings from potting experiments suggested that all three carbonbased materials were conducive to the growth of soybean seeds.Thus,it is evident that the carbon-based materials have been fabricated with success,and they have great potential not only to significantly augment the water retention capacities and structural robustness of sandy soils in arid areas,but also to bolster the development of soil aggregates and crop growth.These materials possess significant application potential for enhancing the quality of sandy soils in arid and semi-arid regions.
基金jointly funded by the Sichuan Provincial Natural Science Foundation of China(Grant No.2023NSFSC0378)the Jiuzhaigou Lake Swamp and River Ecological Restoration Research Project(N5132112022000246)the Research base and Support provided by Jiuzhaigou Administration for this study。
文摘Rubble deposits with a high concentration of rock debris were created after the powerful earthquakes in Jiuzhaigou.Because of the restricted soil resources,water leaks,and nutrient deficits,these deposits pose serious obstacles for vegetation regeneration.The purpose of this study was to investigate the main mechanisms controlling soil water retention and evaluate the effects of different amendments on the hydraulic characteristics and water-holding capacity of collapsed rubble soils.Finegrained soil,forest humus,crushed straw,and organic components that retain water were added to the altered soils to study the pore structure images and soil-water characteristic curves.Comparing understory humus to other supplements,the results showed a considerable increase in the soil's saturated and wilting water content.The saturated water content and wilting water content rose by 17.9%and 4.3%,respectively,when the percentage of understory soil reached 30%.Additionally,the enhanced soil's microporosity and total pore volume increased by 45.33%and 11.27%,respectively,according to nuclear magnetic imaging.It was shown that while clay particles and organic matter improved the soil's ability to adsorb water,they also increased the soil's total capacity to store water.Fine particulate matter did this by decreasing macropores and increasing capillary pores.These results offer an essential starting point for creating strategies for soil repair that would encourage the restoration of plants on slopes that have been damaged.