期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Biological process of soil improvement in civil engineering:A review 被引量:15
1
作者 Murtala Umar Khairul Anuar Kassim Kenny Tiong Ping Chiet 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期767-774,共8页
The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and en... The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP) and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified. 展开更多
关键词 Bio-mediated soil improvement Microorganisms Metabolic activities BiomineralizationUrease activity
下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:5
2
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
下载PDF
Variation of Soil Microbial Biomass and Enzyme Activities at Different Growth Stages of Rice (Oryza sativa)
3
作者 ZENG Lu-sheng LIAO Min CHEN Cheng-li HUANG Chang-yong 《Rice science》 SCIE 2005年第4期283-288,共6页
A pot experiment was conducted under submerged conditions with hybrid rice Zhenong 7 to study the variation in the soil microbial biomass carbon (Cmic), soil microbial biomass nitrogen (Nmic), soil respiration rat... A pot experiment was conducted under submerged conditions with hybrid rice Zhenong 7 to study the variation in the soil microbial biomass carbon (Cmic), soil microbial biomass nitrogen (Nmic), soil respiration rate, soil microbial metabolic quotient, soil enzyme activities, chlorophyll content, proline content and peroxidase activity (POD) in rice leaf at different growth stages. The soil Cmic, Nmic and soil respiration rate significantly increased at the early stage and then declined during rice growth, but ascended slightly at maturity. However, soil metabolic quotient declined at all the stages. Soil urease activity increased at first and then decreased, while acid phosphatase and dehydrogenase activities descended before ascended and then descended again. Soil urease activity and acid phosphatase activity showed a peak value at the tillering stage about 30 days after rice transplanting, but the peak value of dehydrogenase activity emerged at about 50 days after rice transplanting and the three soil enzymatic activities were significantly different at the different developmental stages. As rice growing, chlorophyll content in rice leaf descended at the early stage then ascended and a peak value appeared at about the 70th after rice transplanting, after that declined drastically, while POD activity increased gradually, but proline content declined gradually. There was a slight relation between rice physiological indices and soil biochemical indices, which indicated that soil biochemical characteristics were affected significantly by rice growth in the interaction system of the rice. soil and microorganisms. 展开更多
关键词 RICE soil microbial biomass soil metabolic quotient soil enzyme activity CHLOROPHYLL PROLINE PEROXIDASE
下载PDF
Variation in soil organic matter accumulation and metabolic activity along an elevation gradient in the Santa Rosa Mountains of Southern California, USA
4
作者 Amitava CHATTERJEE George D JENERETTE 《Journal of Arid Land》 SCIE CSCD 2015年第6期814-819,共6页
Variations in soil organic matter accumulation across an elevation can be used to explain the control of substrate supply and variability on soil metabolic activity. We investigated geographic changes in soil organic ... Variations in soil organic matter accumulation across an elevation can be used to explain the control of substrate supply and variability on soil metabolic activity. We investigated geographic changes in soil organic matter and metabolic rates along an elevation gradient(289–2,489 m) in the Santa Rosa Mountains, California, USA from subalpine and montane pine forests through chaparral to desert. From base(289 m) to summit(2,489 m), 24 sites were established for collecting soil samples under canopies and inter-canopy spaces, at 0–5 and 5–15 cm soil depths increments. Soil organic matter(SOM) content was determined using weight loss on ignition at 550°C and soil CO2 efflux(R) was measured at day 5(R5) and day 20(R20) of incubation. Changes in SOM content along the elevation gradient showed a significant relationship(P〈0.05) but R5 and R20 were not related to either elevation or SOM content. However, the ratio of R and SOM(R5/SOM) showed a strong relationship across the mountains at both soil depths. R5/SOM, as an indicator of carbon use efficiency, may be applicable to other semi-arid transects at larger scale modeling of soil metabolic processes. 展开更多
关键词 elevation gradient soil organic matter CO2 efflux metabolic activity
下载PDF
Soil microbial attributes along a chronosequence of Scots pine(Pinus sylvestris var. mongolica) plantations in northern China 被引量:3
5
作者 Xiaodong YAO Wenjing ZENG +1 位作者 Hui ZENG Wei WANG 《Pedosphere》 SCIE CAS CSCD 2020年第4期433-442,共10页
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav... Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs. 展开更多
关键词 soil microbial metabolism quotient(gCO2) soil basal respiration soil depth soil microbial biomass soil organic matter dynamics soil potential extracellular enzyme activity stand age
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部