[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flowe...[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.展开更多
Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in...Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter-annual change. Soil moisture in 0-10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001,2005 and 2006. Soil moisture in about 0-3 m of cropland and about 0-2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0-2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no si nificant differences among other vegetation types. In 2-10 m, there was no significant mois- ture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.展开更多
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and sl...Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau展开更多
[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the m...[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the middle of the Loess Plateau,grassland that had been abandoned for 7 years,grassland that had been abandoned for 30 years,jujube orchard and ditch were sampled,and the particle composition(clay,silt and sand)and moisture changes of the soil in the top 0-100 cm were studied.[Results]In the small watershed,the top 0-100 cm of the soil was composed of 14%clay,70%silt and 16%sand.The contents of clay,silt and sand in the grassland that had been abandoned for 30 years varied greatly,while varied little in the land of other use types.The soil moisture content of grassland that had been abandoned for 30 years,jujube orchard,grassland that had been abandoned for 7 years,farmland and ditch increased with the increase of depth,with means of 10.29%,11.66%,10.08%,11.43%and 11.34%,respectively.[Conclusions]This study provides a theoretical basis for the growth of crops of different land use types in the loess hilly region.展开更多
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep ...Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.展开更多
This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 200...This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.The surface soil moisture was severely affected by seasonal changes in the source region of the Yangtze River,especially in the soil from 0 to 40 cm.However,seasonal variation of soil moisture deeper than 40 cm was different from that in the upper layer.Soil moisture below 40 cm wasn't affected by the seasonal variation.Soil moisture from 0 to 50 cm and the average thickness of wind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,wind deposition played a role in water retention.Similarly,a positive correlation also existed between the average thickness of wind erosion and soil moisture.Deep-soil moisture was the key factor for vegetation structure on the Qinghai?Tibet Plateau.The results are also helpful for further understanding the variation of soil moisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecological environment in the future.展开更多
Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hil...Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.展开更多
Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different s...Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.展开更多
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an...Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
基金Supported by the"Twelfth Five-Year Plan"of the National Science and Technology(2011BAD31B01)~~
文摘[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.
基金National Key Basic Research Special Foundation Project of China, No.2007CB407204National Natural Science Foundation of China, No.40471082
文摘Water stored in deep loess soil is one of the most important resources regulating vegetation growth in the semi-arid area of the Loess Plateau, but planted shrub and forest often disrupt the natural water cycle and in turn influence plant growth. The purpose of this study was to examine the effects of main vegetation types on soil moisture and its inter-annual change. Soil moisture in 0-10 m depth of six vegetation types, i.e., crop, grass, planted shrub of caragana, planted forests of arborvitae, pine and the mixture of pine and arborvitae were measured in 2001,2005 and 2006. Soil moisture in about 0-3 m of cropland and about 0-2 m of other vegetation types varied inter-annually dependent on annual precipitation, but was stable inter-annually below these depths. In 0-2 m, soil moisture of cropland was significantly greater than those of all other vegetation types, and there were no si nificant differences among other vegetation types. In 2-10 m, there was no significant mois- ture difference between cropland and grassland, but the soil moistures under both of them were significantly higher than those of planted shrub and forests. The planted shrub and forests had depleted soil moisture below 2 m to or near permanent wilting point, and there were no significant moisture differences among forest types. The soil moisture of caragana shrub was significantly lower than those of forests, but the absolute difference was very small. The results of this study implicated that the planted shrub and forests had depleted deep soil moisture to the lowest limits to which they could extract and they lived mainly on present year precipitation for transpiration.
基金financially supported by the Fundamental Research Funds for the Central Universities (2015ZCQ-SB-03)the National Natural Science Foundation of China (51309007)the National Key Research and Development Project of China (2016YFC0501704)
文摘Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau
基金Fund of Shaanxi Provincial Land Engineering Construction Group(DJNY-2021-15).
文摘[Objectives]To explore the impact of land use changes on physical properties of soil in loess hilly region.[Methods]The methods of field sampling and indoor analysis were adopted.Farmland in a small watershed in the middle of the Loess Plateau,grassland that had been abandoned for 7 years,grassland that had been abandoned for 30 years,jujube orchard and ditch were sampled,and the particle composition(clay,silt and sand)and moisture changes of the soil in the top 0-100 cm were studied.[Results]In the small watershed,the top 0-100 cm of the soil was composed of 14%clay,70%silt and 16%sand.The contents of clay,silt and sand in the grassland that had been abandoned for 30 years varied greatly,while varied little in the land of other use types.The soil moisture content of grassland that had been abandoned for 30 years,jujube orchard,grassland that had been abandoned for 7 years,farmland and ditch increased with the increase of depth,with means of 10.29%,11.66%,10.08%,11.43%and 11.34%,respectively.[Conclusions]This study provides a theoretical basis for the growth of crops of different land use types in the loess hilly region.
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.
基金financially supported by the 13th Five-Year National Key Research and Development Project (No.2016YFC0501705) funded by the Ministry of Science and Technology (MOST),P.R.China。
文摘Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.
基金supported by the Discipline Construction Fund Project of Gansu Agricultural University(GSAU-XKJS-2018-109)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University+3 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2018-kb01)National"Plan of Ten Thousand People"Youth Top Talent Project,the Youth Innovation Promotion Association,CAS(2013274)Open funding from the Key Laboratory of Mountain Hazards and Earth Surface Process the open funding from State Key Laboratory of Loess and Quaternary Geology(SKLLQG1814)National Key R&D Program of China(2017YFC0404305)
文摘This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.The surface soil moisture was severely affected by seasonal changes in the source region of the Yangtze River,especially in the soil from 0 to 40 cm.However,seasonal variation of soil moisture deeper than 40 cm was different from that in the upper layer.Soil moisture below 40 cm wasn't affected by the seasonal variation.Soil moisture from 0 to 50 cm and the average thickness of wind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,wind deposition played a role in water retention.Similarly,a positive correlation also existed between the average thickness of wind erosion and soil moisture.Deep-soil moisture was the key factor for vegetation structure on the Qinghai?Tibet Plateau.The results are also helpful for further understanding the variation of soil moisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecological environment in the future.
基金This work was supported financially by the National Key Research and Development Plan Projects of China(2017YFC0504604).
文摘Soil respiration(Rs)is important for transport-ing or fixing carbon dioxide from the atmosphere,and even diminutive variations can profoundly influence the carbon cycle.However,the R_(s) dynamics in a loess alpine hilly region with representative sensitivity to climate change and fragile ecology remains poorly understood.This study investigated the correlation and degree of control between R_(s) and its photosynthetic and environmental factors in five subalpine forest cover types.We examined the correlations between R_(s) and variables temperature(T_(10)) and soil moisture content at 10 cm depth(W_(10)),net photosynthetic rate(P_(n))and soil properties to establish multiple models,and the variables were measured for diurnal and monthly vari-ations from September 2018 to August 2019.The results showed that soil physical factors are not the main drivers of R_(s) dynamics at the diel scale;however,the trend in the monthly variation in R_(s) was consistent with that of T_(10)and P_(n).Further,R_(s) was significantly affected by pH,providing further evidence that coniferous forest leaves contribute to soil acidification,thus reducing R_(s).Significant exponential and linear correlations were established between R_(s) and T_(10)and W_(10),respectively,and R_(s) was positively correlated with P_(n).Accordingly,we established a two-factor model and a three-factor model,and the correlation coefficients(R_(2))was improved to different degrees compared with models based only on T_(10) and W_(10).Moreover,temperature sensitivity(Q_(10))was the highest in the secondary forest and lowest in the Larix principis-rupprechtii forest.Our findings suggest that the control of R_(s) by the environment(moisture and tempera-ture)and photosynthesis,which are interactive or comple-mentary effects,may influence spatial and temporal homeo-stasis in the region and showed that the models appropriately described the dynamic variation in R_(s) and the carbon cycle in different forest covers.In addition,total phosphorus(TP)and total potassium(TK)significantly affected the dynamic changes in R_(s).In summary,interannual and seasonal variations in forest R_(s) at multiple scales and the response forces of related ecophysiological factors,especially the interactive driving effects of soil temperature,soil moisture and photo-synthesis,were clarified,thus representing an important step in predicting the impact of climate change and formulating forest carbon management policies.
基金Supported by"948"Project of the Ministry of Water Resources(2015-22)Key Technology R&D Program Project of Gansu Province(1204FKCA069)Key Scientific Research Project of Water Resources of Gansu Province(2012-255)
文摘Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.
基金supported by the National Natural Science Foundation of China (41501233,41601216,41390461)the National Key Project for Research and Development (2016YFC0501605)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017076)the Open Research Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021402-1806)
文摘Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.