Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr...Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.展开更多
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r...In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.展开更多
The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc...The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.展开更多
Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive pr...Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.展开更多
Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?...Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?C and evaluated by comparison with the information from a transmission electron microscope (TEM). The crystalline silicon film thickness from trichlorosilane gas was comparable to that of an amorphous silicon carbide film from monomethylsilane gas. The film obtained from the gas mixture was amorphous and was the thinnest in this study. Because the thickness trend obtained by the LCM agreed with that by the TEM, the LCM is shown to be a convenient evaluation tool for the behavior of various film deposition.展开更多
The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sed...The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.展开更多
The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a ...The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo (Cu),skarn Fe (Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn ±Cu ± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including (i) the early porphyry mineralization stage,(ii) main porphyry mineralization stage,(iii) transition mineralization stage,(iv) vein-type mineralization stage and (v) late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites: Py1 is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium- to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Py1 to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni (0.03-10.79,average 2.13) and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ^34SCDT values of Py1 (0.42‰-1.61‰,average 1.16‰),Py2 (-1.23‰ to 0.82‰,average 0.35‰),Py3 (-0.36‰ to 2.47‰,average 0.97‰),Py4 (2.51‰-3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit (-5‰ to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian (JurassiceCretaceous) magmatic-hydrothermal events.Variations of d34S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type PbeZn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.展开更多
Objective The Ordos Basin located in the westem part of the North China Craton bears various energy resources such as oil, gas, coal and uranium. It is one of the richest uranium-bearing basins in China. Since the di...Objective The Ordos Basin located in the westem part of the North China Craton bears various energy resources such as oil, gas, coal and uranium. It is one of the richest uranium-bearing basins in China. Since the discovery of the large-scale Dongsheng, Hangjinqi and Daying uranium deposits in the north of the Ordos Basin, a new breakthrough of uranium exploration has been achieved in the Ningdong area (eastern Ningxia) on the western margin of the Ordos Basin (WMOB) in the past two years (Wang Feifei et al., 2017).展开更多
The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting...The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.展开更多
In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) an...In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.展开更多
To fabricate a heterostructure solar cell using environmentally friendly materials and low cost techniques, tin oxide (SnO2) and cuprous oxide (Cu2O) were deposited by the sol-gel method and the electrochemical deposi...To fabricate a heterostructure solar cell using environmentally friendly materials and low cost techniques, tin oxide (SnO2) and cuprous oxide (Cu2O) were deposited by the sol-gel method and the electrochemical deposition, respectively. The SnO2 films were deposited from a SnCl2 solution containing ethanol and acetic acid. The Cu2O films were deposited using a galvanostatic method from an aqueous bath containing CuSO4 and lactic acid at a temperature of 40°C. The Cu2O/SnO2 heterostructure solar cells showed rectification and photovoltaic properties, and the best cell showed a conversion efficiency of 6.6 × 10-2 % with an open-circuit voltage of 0.29 V, a short-circuit current of 0.58 mA/cm2, and a fill factor of 0.39.展开更多
Fused salt accelerated hot corrosion is quite common in gas turbines, fossil fuelled devices, waste inclinators, pyrochemical systems, etc. Presence of fused salt on metal surface dissolves their existing oxide layer....Fused salt accelerated hot corrosion is quite common in gas turbines, fossil fuelled devices, waste inclinators, pyrochemical systems, etc. Presence of fused salt on metal surface dissolves their existing oxide layer. This results in an increase in oxidation rate of the metal. Since, zirconia coating is well recognized for corrosion protection under high temperature oxidative environment, we have developed zirconia coating on 9Cr1Mo ferritic steel and their oxidation performance was evaluated in LiCl-NaCl and Na2SO4-K2SO4 salts deposit system in air atmosphere at 650?C and 850?C, respectively. Before coating development, zirconium based sol was synthesized using zirconium (IV) propoxide as a precursor. Oxidation test results indicated that the zirconia coated specimens shows more than two times higher corrosion resistance in LiCl-NaCl and three time higher corrosion resistance in Na2SO4-K2SO4 salt deposit, respectively.展开更多
Structural deformation and dendrite formation, which would impact the electrochemical processes of rechargeable metal batteries, are usually observed in the high-energy density metal electrodes. Herein,we design an in...Structural deformation and dendrite formation, which would impact the electrochemical processes of rechargeable metal batteries, are usually observed in the high-energy density metal electrodes. Herein,we design an in-situ optical mechano-electrochemical system to study Al deposition on the Al electrode in non-aqueous Al batteries under non-uniform strain. Inhomogeneous distribution of applied strain is realized by creating an oval hole in the Al electrode. The results of the in-situ experiments suggest that the dense Al deposition, which is related to the evolution of surface morphology and increasing reactive sites, is achieved in the regions of stress concentration. The evolution of surface morphology is monitored by the in-situ tension experiments using scanning electron microscope and atomic force microscope.Besides, a qualitative mathematical model is employed to analyze the changes of the local reaction rate owing to the changed surface morphology and the cracks of oxide film under tensile stress. The results are useful to understand the Al deposition when the mechanical force is applied to the metal electrode.展开更多
The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magma...The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magmatic system, and the mineralization age was consistent with the diagenetic age. However,the relationship between granitic magmatism and mineralization is still unclear in the SJZ. In this study, CH-O-He-Ar and in-situ S-Pb isotope analyses were conducted to determine the sources of ore-forming fluids and metals, which were combined with geochemistry data of SJZ granitoids from previous studies to constrain the relationship between the magmatism and the mineralization. The C-H-O-He-Ar-S-Pb isotopic compositions suggested the SJZ ore-forming material and fluids were derived from a magmatic source, which has mixed a small amount of mantle-derived materials. In addition, the disseminated sulfide from the syenogranite has comparable S-Pb isotopic composition with the sulfide minerals from ore veins,suggesting that the generation of the SJZ ore-forming fluids has a close relationship with the syenogranite magmatism. Combining with the geochemical characters of the syenogranite, the authors proposed that the mantle-derived fingerprint of the SJZ ore-forming fluid might be caused by the parent magma of the syenogranite, which was derived from partial melting of the juvenile lower crust, and underwent the residual melts segregated from a crystal mush in the shallow magma reservoir. The extraction of the syenogranite parent magma further concentrated the fertilized fluids, which was crucial to mineralization of the SJZ Ag-Pb-Zn deposit.展开更多
This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biologica...This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biological reactivity.Employing an operando investigation system that synergizes microfluidic technology with advanced micro-visualization techniques within a lab-on-a-chip framework enables a meticulous examination of the dynamic deposition phenomena.The incorporation of object detection and deep learning methodologies in image processing streamlines the automatic identification and swift extraction of crucial data,effectively tackling the complexities associated with capturing and mitigating these hazardous particles.Combined with the analysis of the growth behavior of particle chain under different applied voltages,it established that a linear relationship exists between the applied voltage and θ.And there is a negative correlation between the average particle chain length and electric field strength at the collection electrode surface(4.2×10^(5)to 1.6×10^(6)V·m^(-1)).The morphology of the deposited particle agglomerate at different electric field strengths is proposed:dendritic agglomerate,long chain agglomerate,and short chain agglomerate.展开更多
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha...Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in ...The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.展开更多
Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.Th...Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs.展开更多
The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies f...The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies from chartreuse to dark yellow brown and to russet.The brown garnet(Grt1)is related to pyrrhotite and chalcopyrite,and the green garnet(Grt2)is associated with lead–zinc mineralization.LA-ICP-MS is the induced coupled plasma mass spectrometry.This paper has used this technique to investigate Grt1 and Grt2.Grt1 develops core–rim textures with strong oscillation zone occurring in rim,whereas Grt2lacks core–rim textures and featured by oscillation zone.LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO(29.90–37.52%)and FeO(21.17–33.35%),but low in Al_(2)O_(3)(0.05–4.85%).The calculated end members belong to grandite(grossular–andradite)garnets andradite.The negative Al(IV)versus Fe^(3+),positive Al(IV)versus total Al stoichiometric number,the positive Al(IV)versus Fe^(3+),and the negative Al(IV)versus total REE,all indicate that the substitution of REEs in garnets is controlled by YAG.All Garnets are depleted in large lithophile elements(e.g.,Rb=0.00–4.01 ppm,Sr=0.03–8.56 ppm).The total REE in Grt1 core is high(ΣREE=233–625 ppm),with HREE enriched pattern(LREE/HREE=0.33–1.69)and weak negative Eu anomalies(δEu=0.21–0.47).In contrast,the total REEs in the Grt1 rim and Grt2 are low(ΣREE=12.4–354 ppm;ΣREE=21.0–65.3 ppm),with LREE enriched pattern(LREE/HREE=0.54–34.4;LREE/HREE=11.4–682)and positive Eu anomalies(δEu=0.35–27.2;δEu=1.02–30.7).After data compilation of garnet chemicals,we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system.It was close-to-neutral,with a low water–rock ratio.The core of garnet was formed by fluid diffusion in metasomatic processes.The fluid was changed into a relatively open system with reduced,chloride-rich,and weakacid fluid.It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.展开更多
基金National Natural Science Foundation of China (51935014,52165043, 82072084, 81871498)Jiang Xi Provincial Natural Science Foundation of China (20192ACB20005,2020ACB214004)+6 种基金The Provincial Key R&D Projects of Jiangxi (20201BBE51012)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme (2018)Shenzhen Science and Technology Plan Project (JCYJ20170817112445033)Innovation Team Project on University of Guangdong Province(2018GKCXTD001)Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(PT2020E002)China Postdoctoral Science Foundation(2020M682114)Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.
基金jointed supported by National Key Research and Development Program of China (Grant No. 2021YFC2901704)the National Natural Science Foundation of China (Grant No. 41930430)the State Key Laboratory of Lithospheric Evolution, IGGCAS (Grant No. SKL-Z201905)。
文摘The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.
文摘Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.
文摘Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?C and evaluated by comparison with the information from a transmission electron microscope (TEM). The crystalline silicon film thickness from trichlorosilane gas was comparable to that of an amorphous silicon carbide film from monomethylsilane gas. The film obtained from the gas mixture was amorphous and was the thinnest in this study. Because the thickness trend obtained by the LCM agreed with that by the TEM, the LCM is shown to be a convenient evaluation tool for the behavior of various film deposition.
基金supported by the National Science Foundation of China(Grants Nos.41672080,41772079,41272113)Outstanding Talent Foundation of the Institute of Geochemistry,Chinese Academy of Sciences
文摘The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.
基金financially supported by National Key Research and Development Program of China (2016YFC0600504)Fundamental Research Funds for the Central Universities (2652017218)
文摘The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo (Cu),skarn Fe (Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn ±Cu ± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including (i) the early porphyry mineralization stage,(ii) main porphyry mineralization stage,(iii) transition mineralization stage,(iv) vein-type mineralization stage and (v) late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites: Py1 is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium- to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Py1 to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni (0.03-10.79,average 2.13) and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ^34SCDT values of Py1 (0.42‰-1.61‰,average 1.16‰),Py2 (-1.23‰ to 0.82‰,average 0.35‰),Py3 (-0.36‰ to 2.47‰,average 0.97‰),Py4 (2.51‰-3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit (-5‰ to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian (JurassiceCretaceous) magmatic-hydrothermal events.Variations of d34S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type PbeZn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.
基金This work was supported by the National Natural Science Foundation of China(grant No.41330315)China geological survey(grant No.12120114009201)
文摘Objective The Ordos Basin located in the westem part of the North China Craton bears various energy resources such as oil, gas, coal and uranium. It is one of the richest uranium-bearing basins in China. Since the discovery of the large-scale Dongsheng, Hangjinqi and Daying uranium deposits in the north of the Ordos Basin, a new breakthrough of uranium exploration has been achieved in the Ningdong area (eastern Ningxia) on the western margin of the Ordos Basin (WMOB) in the past two years (Wang Feifei et al., 2017).
基金supported by the basic science research project (A3420060142) from China National Defence Science and Technology Industry BureauChina National Natural Science Fund Project (40872165)
文摘The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium.
基金supported by the National Science and Technology Major Project of China(No.2009ZX02037-003)China Postdoctoral Science Foundation(No.2011M500996)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.
文摘To fabricate a heterostructure solar cell using environmentally friendly materials and low cost techniques, tin oxide (SnO2) and cuprous oxide (Cu2O) were deposited by the sol-gel method and the electrochemical deposition, respectively. The SnO2 films were deposited from a SnCl2 solution containing ethanol and acetic acid. The Cu2O films were deposited using a galvanostatic method from an aqueous bath containing CuSO4 and lactic acid at a temperature of 40°C. The Cu2O/SnO2 heterostructure solar cells showed rectification and photovoltaic properties, and the best cell showed a conversion efficiency of 6.6 × 10-2 % with an open-circuit voltage of 0.29 V, a short-circuit current of 0.58 mA/cm2, and a fill factor of 0.39.
文摘Fused salt accelerated hot corrosion is quite common in gas turbines, fossil fuelled devices, waste inclinators, pyrochemical systems, etc. Presence of fused salt on metal surface dissolves their existing oxide layer. This results in an increase in oxidation rate of the metal. Since, zirconia coating is well recognized for corrosion protection under high temperature oxidative environment, we have developed zirconia coating on 9Cr1Mo ferritic steel and their oxidation performance was evaluated in LiCl-NaCl and Na2SO4-K2SO4 salts deposit system in air atmosphere at 650?C and 850?C, respectively. Before coating development, zirconium based sol was synthesized using zirconium (IV) propoxide as a precursor. Oxidation test results indicated that the zirconia coated specimens shows more than two times higher corrosion resistance in LiCl-NaCl and three time higher corrosion resistance in Na2SO4-K2SO4 salt deposit, respectively.
基金supported by the National Natural Science Foundation of China(12002183)。
文摘Structural deformation and dendrite formation, which would impact the electrochemical processes of rechargeable metal batteries, are usually observed in the high-energy density metal electrodes. Herein,we design an in-situ optical mechano-electrochemical system to study Al deposition on the Al electrode in non-aqueous Al batteries under non-uniform strain. Inhomogeneous distribution of applied strain is realized by creating an oval hole in the Al electrode. The results of the in-situ experiments suggest that the dense Al deposition, which is related to the evolution of surface morphology and increasing reactive sites, is achieved in the regions of stress concentration. The evolution of surface morphology is monitored by the in-situ tension experiments using scanning electron microscope and atomic force microscope.Besides, a qualitative mathematical model is employed to analyze the changes of the local reaction rate owing to the changed surface morphology and the cracks of oxide film under tensile stress. The results are useful to understand the Al deposition when the mechanical force is applied to the metal electrode.
基金supported financially by the China Geological Survey project [DD20160123 (DD-16-049, D1522), DD20160050, DD20190370]the Fundamental Research Funds for the Central Universities (310827171122)the National Natural Science Foundation of China (Grant 41672068)。
文摘The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magmatic system, and the mineralization age was consistent with the diagenetic age. However,the relationship between granitic magmatism and mineralization is still unclear in the SJZ. In this study, CH-O-He-Ar and in-situ S-Pb isotope analyses were conducted to determine the sources of ore-forming fluids and metals, which were combined with geochemistry data of SJZ granitoids from previous studies to constrain the relationship between the magmatism and the mineralization. The C-H-O-He-Ar-S-Pb isotopic compositions suggested the SJZ ore-forming material and fluids were derived from a magmatic source, which has mixed a small amount of mantle-derived materials. In addition, the disseminated sulfide from the syenogranite has comparable S-Pb isotopic composition with the sulfide minerals from ore veins,suggesting that the generation of the SJZ ore-forming fluids has a close relationship with the syenogranite magmatism. Combining with the geochemical characters of the syenogranite, the authors proposed that the mantle-derived fingerprint of the SJZ ore-forming fluid might be caused by the parent magma of the syenogranite, which was derived from partial melting of the juvenile lower crust, and underwent the residual melts segregated from a crystal mush in the shallow magma reservoir. The extraction of the syenogranite parent magma further concentrated the fertilized fluids, which was crucial to mineralization of the SJZ Ag-Pb-Zn deposit.
基金supported by the National Natural Science Foundation of China(52200130,22308100).
文摘This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biological reactivity.Employing an operando investigation system that synergizes microfluidic technology with advanced micro-visualization techniques within a lab-on-a-chip framework enables a meticulous examination of the dynamic deposition phenomena.The incorporation of object detection and deep learning methodologies in image processing streamlines the automatic identification and swift extraction of crucial data,effectively tackling the complexities associated with capturing and mitigating these hazardous particles.Combined with the analysis of the growth behavior of particle chain under different applied voltages,it established that a linear relationship exists between the applied voltage and θ.And there is a negative correlation between the average particle chain length and electric field strength at the collection electrode surface(4.2×10^(5)to 1.6×10^(6)V·m^(-1)).The morphology of the deposited particle agglomerate at different electric field strengths is proposed:dendritic agglomerate,long chain agglomerate,and short chain agglomerate.
基金Projects(51071107,51001080,51201056)supported by the National Natural Science Foundation of ChinaProject(2010CB934703)supported by the National Basic Research Program of China+1 种基金Project(13211027)supported by Science and Technology Plan Project of Hebei Province,ChinaProject(2011008)supported by Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology,China
文摘Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
基金supported by the National Natural Science Foundation of China(Nos.52003038 and 52192610)Startup funds of Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China(No.U03210019).
文摘The implementation of a robust artificial solid electrolyte interphase(ASEI)to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries.Despite of devoted efforts in tailoring components of ASEI,the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet.Herein,we show that the lithium plating/striping behaviors can be substantially enhanced(over 900 h with an overpotential of less than 20 mV at 1 mA·cm^(−2)in Li|Li symmetric cells and 146 cycles in anode-free cells)by regulating the heterogeneous interphases.This favorable ASEI composed of LiF and Li_(3)N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings.Further,the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally.Li_(3)N has high adsorption energy and low ion diffusion barrier,which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites.Both the substrate and LiF are interfacially stable with high electron tunneling barriers,preventing the electrolyte decomposition and parasitic reactions.Finally,the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow,providing a stable environment for long-term cycling of lithium metal batteries.
基金financially supported by the National Key R&D Program of China(Grant No.2016YFA0202500)the National Natural Science Fund for Excellent Young Scholars(Grant No.21722508)。
文摘Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs.
基金funded by the Surface Project of National Natural Science Foundation of China (41372093)。
文摘The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies from chartreuse to dark yellow brown and to russet.The brown garnet(Grt1)is related to pyrrhotite and chalcopyrite,and the green garnet(Grt2)is associated with lead–zinc mineralization.LA-ICP-MS is the induced coupled plasma mass spectrometry.This paper has used this technique to investigate Grt1 and Grt2.Grt1 develops core–rim textures with strong oscillation zone occurring in rim,whereas Grt2lacks core–rim textures and featured by oscillation zone.LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO(29.90–37.52%)and FeO(21.17–33.35%),but low in Al_(2)O_(3)(0.05–4.85%).The calculated end members belong to grandite(grossular–andradite)garnets andradite.The negative Al(IV)versus Fe^(3+),positive Al(IV)versus total Al stoichiometric number,the positive Al(IV)versus Fe^(3+),and the negative Al(IV)versus total REE,all indicate that the substitution of REEs in garnets is controlled by YAG.All Garnets are depleted in large lithophile elements(e.g.,Rb=0.00–4.01 ppm,Sr=0.03–8.56 ppm).The total REE in Grt1 core is high(ΣREE=233–625 ppm),with HREE enriched pattern(LREE/HREE=0.33–1.69)and weak negative Eu anomalies(δEu=0.21–0.47).In contrast,the total REEs in the Grt1 rim and Grt2 are low(ΣREE=12.4–354 ppm;ΣREE=21.0–65.3 ppm),with LREE enriched pattern(LREE/HREE=0.54–34.4;LREE/HREE=11.4–682)and positive Eu anomalies(δEu=0.35–27.2;δEu=1.02–30.7).After data compilation of garnet chemicals,we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system.It was close-to-neutral,with a low water–rock ratio.The core of garnet was formed by fluid diffusion in metasomatic processes.The fluid was changed into a relatively open system with reduced,chloride-rich,and weakacid fluid.It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.