Eu2+, Dy3+-doped SrAl2O4 was prepared by a hydrothermal reaction through the process of calcination at lower temperature. The physicochemical properties of the SrAl2O4: Eu2+, Dy3+ phosphor were characterized and compa...Eu2+, Dy3+-doped SrAl2O4 was prepared by a hydrothermal reaction through the process of calcination at lower temperature. The physicochemical properties of the SrAl2O4: Eu2+, Dy3+ phosphor were characterized and compared to those of the SrAl2O4: Eu2+, Dy3+ prepared by sol-gel method. The photocatalytic properties of the SrAl2O4: Eu2+, Dy3+ were evaluated in photocatalytic water decomposition for hydrogen production. The SrAl2O4: Eu2+, Dy3+ prepared by hydrothermal reaction exhibited excellent phosphor properties which were similar with that prepared by sol-gel method. Its photocatalytic activity for hydrogen evolution was higher than that of TiO2 photocatalyst.展开更多
Tungsten (VI) oxide (WO3) nanomaterials were synthesized by a sol-gel method using WC16 and C2HsOH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron micr...Tungsten (VI) oxide (WO3) nanomaterials were synthesized by a sol-gel method using WC16 and C2HsOH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) equipped with energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and morphology of the materials. There were significant differences between the WO3 materials that were calcinated and those that were subjected to a hydrothermal process. The XRD results revealed that calcination temperatures of 300℃and 400℃ gave hexagonal structures and temperatures of 500℃ and 600℃ gave monoclinic structures. The SEM images showed that an increase in calcination temperature led to a decrease in the WO3 powder particle size. The TEM analysis showed that several nanoparticles agglomerated to form bigger clusters. The hydrothermal process produced hexagonal structures for holding times of 12, 16, and 20 h and monoclinic structures for a holding time of 24 h. The SEM results showed transparent rectangular panicles which according to the TEM results originated from the aggregation of several nanotubes.展开更多
Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase ...Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL)for mesoporous perovskite solar cells.Due to the improved crystal phase,fihn thickness and nanopartMe size of TiO2 layer,which were controlled by varying the one-step hydrothermal reaction time and annealing time,the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm^2,and a maximum power conversion efficiency(PCE)of 19.87%.It is found that the ultra-high Jsc attributes to the excellent film quality,light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film.The results indicate that mix-phase mesoporous metal oxide fihns could be a promising candidate for producing effective ETLs and high efficiency PSCs.展开更多
文摘Eu2+, Dy3+-doped SrAl2O4 was prepared by a hydrothermal reaction through the process of calcination at lower temperature. The physicochemical properties of the SrAl2O4: Eu2+, Dy3+ phosphor were characterized and compared to those of the SrAl2O4: Eu2+, Dy3+ prepared by sol-gel method. The photocatalytic properties of the SrAl2O4: Eu2+, Dy3+ were evaluated in photocatalytic water decomposition for hydrogen production. The SrAl2O4: Eu2+, Dy3+ prepared by hydrothermal reaction exhibited excellent phosphor properties which were similar with that prepared by sol-gel method. Its photocatalytic activity for hydrogen evolution was higher than that of TiO2 photocatalyst.
文摘Tungsten (VI) oxide (WO3) nanomaterials were synthesized by a sol-gel method using WC16 and C2HsOH as precursors followed by calcination or hydrothermal treatment. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) equipped with energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and morphology of the materials. There were significant differences between the WO3 materials that were calcinated and those that were subjected to a hydrothermal process. The XRD results revealed that calcination temperatures of 300℃and 400℃ gave hexagonal structures and temperatures of 500℃ and 600℃ gave monoclinic structures. The SEM images showed that an increase in calcination temperature led to a decrease in the WO3 powder particle size. The TEM analysis showed that several nanoparticles agglomerated to form bigger clusters. The hydrothermal process produced hexagonal structures for holding times of 12, 16, and 20 h and monoclinic structures for a holding time of 24 h. The SEM results showed transparent rectangular panicles which according to the TEM results originated from the aggregation of several nanotubes.
文摘Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL)for mesoporous perovskite solar cells.Due to the improved crystal phase,fihn thickness and nanopartMe size of TiO2 layer,which were controlled by varying the one-step hydrothermal reaction time and annealing time,the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm^2,and a maximum power conversion efficiency(PCE)of 19.87%.It is found that the ultra-high Jsc attributes to the excellent film quality,light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film.The results indicate that mix-phase mesoporous metal oxide fihns could be a promising candidate for producing effective ETLs and high efficiency PSCs.