Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for ...Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for enhanced photocatalytic efficiency under visible light.Here,we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO_(2).The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0μmol g^(-1) h^(-1) under visible light irradiation.Meanwhile,the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles.The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions.Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.展开更多
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金financial support from Hainan Province Natural Science Foundation of China (No. 219QN151)the National Natural Science Foundation of China (21801052)+1 种基金Hainan University Start-up Fund (No. KYQD(ZR)1852)the Construction Program of Research Platform in Hainan University (No. ZY2019HN09)。
文摘Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for enhanced photocatalytic efficiency under visible light.Here,we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO_(2).The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0μmol g^(-1) h^(-1) under visible light irradiation.Meanwhile,the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles.The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions.Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.