This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to ob...This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.展开更多
India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with...India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with the remaining states lagging behind.The research reveals that during monsoons,heavy cloud cover and rain lead to high solar resource variability,intermittency and the risk of very low PV generation,which can result in reliability issues in future PV-dominated electricity grids.Although energy storage can help in overcoming high intermittency,there are multiple challenges associated with it.The novelty of this study lies in demonstrating the benefits of combining multiple PV sites in various regions to mitigate the risks of low PV generation and high variability.The variability of individual sites was found to be up to∼3.5 times higher than the variability of combined generation.During noon,prominent solar park sites like Bhadla and NP Kunta experience a decrease in power generation to values as low as∼10%of the rated PV capacity.However,the minimum generation of the large-scale dispersed PV generation is>30%.Furthermore,the research identifies other benefits of dispersing PV generation across the country,viz.,reduction of seasonal variability by adding PV capacity in the southern region,widening of the PV generation span,more room for PV capacity addition,reduction in storage and ramping needs,utilization of hydroelectric potential of the north-east and PV potential of Ladakh,and creating opportunities for sustainable development in rural agrarian regions through agrivoltaics.展开更多
The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting...The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.展开更多
In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. I...In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision technique of forecasting model for short-term-ahead power output of PV system based on solar radiation prediction. Application of Recurrent Neural Network (RNN) is shown for solar radiation prediction in this paper. The proposed method in this paper does not require complicated calculation, but mathematical model with only useful weather data. The validity of the proposed RNN is confirmed by comparing simulation results of solar radiation forecasting with that obtained from other展开更多
In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State ...In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.展开更多
The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation ...The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.展开更多
Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The sola...Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The solar photovoltaic project includes power electronics with high quality performance devices, incorporated with smart energy management principles. Power electronics is used to improve the energy efficiency of apparatus, and help the generation of environmentally clean energy. In this article the explanation of role of power electronics and the discussion about similar and future concepts in solar photovoltaic systems related to reliability and advancement of each technology in India has been presented.展开更多
This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA)....This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA). The study considered various technical and economic factors including system net present cost (NPC), levelized cost of energy (LCOE), and PV power generation using energy analysis and microgrid design software “HOMER”. It also presents an overview of the current electricity production and demand in the Kingdom. The weather data used in this study have been collected from the new solar atlas launched by King Abdullah City for Atomic and Renewable Energy (KACARE). The selected solar resource monitoring station for this study is located near to Riyadh city and has an annual average daily total irradiation of 6300 W/m2/day. The study shows that, for stand-alone PV system in the vicinity of Riyadh city, tracking system is economically better than fixed angle system. Among the considered tracking systems, VCA system is the most preferable as it has low NPC and LCOE values with a high return on investment (ROI) as well as low carbon dioxide (CO2) emissions due to a high renewable energy penetration.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
通过系统在不同运行模式下的实验研究,分析太阳辐照度、温度等参数对系统光伏光热性能的影响,结果表明光伏热泵组件发电效率比传统光伏组件提高16.4%;在获得同样热水情况下,混联运行比串联运行每天多输出1.7 k Wh的净发电量,热泵平均COP...通过系统在不同运行模式下的实验研究,分析太阳辐照度、温度等参数对系统光伏光热性能的影响,结果表明光伏热泵组件发电效率比传统光伏组件提高16.4%;在获得同样热水情况下,混联运行比串联运行每天多输出1.7 k Wh的净发电量,热泵平均COP从1.9升高到3.4。间接式光伏热泵系统将集热器的热量在蒸发器与冷凝器间进行合理分配后,比直膨式光伏热泵系统具有更好的综合性能。展开更多
In China, systemic techno-economic analysis for solar tracker has been absent. To fill the blank, by taking the economic analysis of solar tracker application as the research object and using the LCOE method widely us...In China, systemic techno-economic analysis for solar tracker has been absent. To fill the blank, by taking the economic analysis of solar tracker application as the research object and using the LCOE method widely used internationally, the techno-economic analysis model of solar tracker was established according to conditions in China. Influence factors on LCOE were analyzed by using the established model, and the relationship between each cost factor and the cost component of energy leveling of tracker was further studied. In addition, the calculation method of investment payback period based on energy leveling analysis was established, and the influence of various factors on investment payback period was revealed through an example calculation. The research results will help to measure the economy of tracker application more accurately and comprehensively, and promote the popularization and application of solar tracker. The economic analysis model of solar tracker application was established by using LCOE method. The influence factors and cost component of LCOE were analyzed with the model. The payback period of solar tracker investment was also analyzed based on LCOE method.展开更多
The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum ...The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.展开更多
The target of this research is to estimate the distribution of global solar radiation (GSR) and reanalysis datasets (ERA-5) for development of PV cost reduction and predict of level cost energy over five countries in ...The target of this research is to estimate the distribution of global solar radiation (GSR) and reanalysis datasets (ERA-5) for development of PV cost reduction and predict of level cost energy over five countries in North Africa during the period time from 2011 to 2020. The effectiveness of reanalysis datasets (ERA-5) for North African countries was evaluated against high-quality surfaces measured using statistical analysis. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R<sup>2</sup>) varies from 0.93 to 99% in the present research. North African countries are among the most vulnerable regions to the potential impacts of climate change. The increasing impact of climate change shows the need to build up a reliable energy mix and improve the resilience of existing and new energy systems. The development of PV cost reduction and the predicted of level cost of energy (LCOE) are discussed and used one PV Module to calculate the total cost for five countries in North Africa. This research’s objective is to provide a reliable representation of the world’s solar radiation to aid in the use of solar energy in all sectors.展开更多
文摘This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.
基金Department of Science and Technology,Government of India,to carry out the research under the Project U.K.India Clean Energy Research Institute(UKICERI)under Grant DST/RCUK/JVCCE/2015/02(C).
文摘India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with the remaining states lagging behind.The research reveals that during monsoons,heavy cloud cover and rain lead to high solar resource variability,intermittency and the risk of very low PV generation,which can result in reliability issues in future PV-dominated electricity grids.Although energy storage can help in overcoming high intermittency,there are multiple challenges associated with it.The novelty of this study lies in demonstrating the benefits of combining multiple PV sites in various regions to mitigate the risks of low PV generation and high variability.The variability of individual sites was found to be up to∼3.5 times higher than the variability of combined generation.During noon,prominent solar park sites like Bhadla and NP Kunta experience a decrease in power generation to values as low as∼10%of the rated PV capacity.However,the minimum generation of the large-scale dispersed PV generation is>30%.Furthermore,the research identifies other benefits of dispersing PV generation across the country,viz.,reduction of seasonal variability by adding PV capacity in the southern region,widening of the PV generation span,more room for PV capacity addition,reduction in storage and ramping needs,utilization of hydroelectric potential of the north-east and PV potential of Ladakh,and creating opportunities for sustainable development in rural agrarian regions through agrivoltaics.
文摘The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.
文摘In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision technique of forecasting model for short-term-ahead power output of PV system based on solar radiation prediction. Application of Recurrent Neural Network (RNN) is shown for solar radiation prediction in this paper. The proposed method in this paper does not require complicated calculation, but mathematical model with only useful weather data. The validity of the proposed RNN is confirmed by comparing simulation results of solar radiation forecasting with that obtained from other
文摘In order to fully comprehend the developing status of wind power and photovoltaic (PV) power generation, a special investigation on the integration of wind power and PV power was launched by the agencies of the State Electricity Regulatory Commission (SERC) throughout China during July-October 2010. This report is completed based on the investigation along with routine supervisory and management programs. There are totally 573 wind power projects and 94 PV power projects involved. Existing problems in these projects are pointed out and proposals for regulation are put forward.
文摘The energy assessment of the PV power systems is carried out by using different types of performance indicators that benchmark the output of these systems against the PV panel maximum output at hypothetical operation conditions. In this paper, a comparative analysis of six types of performance indicators is conducted and a new performance indicator which considers PV panel slope and orientation is proposed. The proposed indicator is benchmarking the PV system actual output against the maximum output of the same system if it would operate in two axis tracking mode. The proposed performance indicator is used to develop a friendly user calculator of PV system output that can be used by, energy providers and PV system installers to evaluate the output of the PV grid connect network. The advantage of the developed calculator is high-lighted by a case study that estimates energy capacity of different residential rooftop PV systems installed in a residential suburb in Sydney.
文摘Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The solar photovoltaic project includes power electronics with high quality performance devices, incorporated with smart energy management principles. Power electronics is used to improve the energy efficiency of apparatus, and help the generation of environmentally clean energy. In this article the explanation of role of power electronics and the discussion about similar and future concepts in solar photovoltaic systems related to reliability and advancement of each technology in India has been presented.
文摘This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA). The study considered various technical and economic factors including system net present cost (NPC), levelized cost of energy (LCOE), and PV power generation using energy analysis and microgrid design software “HOMER”. It also presents an overview of the current electricity production and demand in the Kingdom. The weather data used in this study have been collected from the new solar atlas launched by King Abdullah City for Atomic and Renewable Energy (KACARE). The selected solar resource monitoring station for this study is located near to Riyadh city and has an annual average daily total irradiation of 6300 W/m2/day. The study shows that, for stand-alone PV system in the vicinity of Riyadh city, tracking system is economically better than fixed angle system. Among the considered tracking systems, VCA system is the most preferable as it has low NPC and LCOE values with a high return on investment (ROI) as well as low carbon dioxide (CO2) emissions due to a high renewable energy penetration.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘通过系统在不同运行模式下的实验研究,分析太阳辐照度、温度等参数对系统光伏光热性能的影响,结果表明光伏热泵组件发电效率比传统光伏组件提高16.4%;在获得同样热水情况下,混联运行比串联运行每天多输出1.7 k Wh的净发电量,热泵平均COP从1.9升高到3.4。间接式光伏热泵系统将集热器的热量在蒸发器与冷凝器间进行合理分配后,比直膨式光伏热泵系统具有更好的综合性能。
文摘In China, systemic techno-economic analysis for solar tracker has been absent. To fill the blank, by taking the economic analysis of solar tracker application as the research object and using the LCOE method widely used internationally, the techno-economic analysis model of solar tracker was established according to conditions in China. Influence factors on LCOE were analyzed by using the established model, and the relationship between each cost factor and the cost component of energy leveling of tracker was further studied. In addition, the calculation method of investment payback period based on energy leveling analysis was established, and the influence of various factors on investment payback period was revealed through an example calculation. The research results will help to measure the economy of tracker application more accurately and comprehensively, and promote the popularization and application of solar tracker. The economic analysis model of solar tracker application was established by using LCOE method. The influence factors and cost component of LCOE were analyzed with the model. The payback period of solar tracker investment was also analyzed based on LCOE method.
文摘The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.
文摘The target of this research is to estimate the distribution of global solar radiation (GSR) and reanalysis datasets (ERA-5) for development of PV cost reduction and predict of level cost energy over five countries in North Africa during the period time from 2011 to 2020. The effectiveness of reanalysis datasets (ERA-5) for North African countries was evaluated against high-quality surfaces measured using statistical analysis. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R<sup>2</sup>) varies from 0.93 to 99% in the present research. North African countries are among the most vulnerable regions to the potential impacts of climate change. The increasing impact of climate change shows the need to build up a reliable energy mix and improve the resilience of existing and new energy systems. The development of PV cost reduction and the predicted of level cost of energy (LCOE) are discussed and used one PV Module to calculate the total cost for five countries in North Africa. This research’s objective is to provide a reliable representation of the world’s solar radiation to aid in the use of solar energy in all sectors.