This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to ob...This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.展开更多
India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with...India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with the remaining states lagging behind.The research reveals that during monsoons,heavy cloud cover and rain lead to high solar resource variability,intermittency and the risk of very low PV generation,which can result in reliability issues in future PV-dominated electricity grids.Although energy storage can help in overcoming high intermittency,there are multiple challenges associated with it.The novelty of this study lies in demonstrating the benefits of combining multiple PV sites in various regions to mitigate the risks of low PV generation and high variability.The variability of individual sites was found to be up to∼3.5 times higher than the variability of combined generation.During noon,prominent solar park sites like Bhadla and NP Kunta experience a decrease in power generation to values as low as∼10%of the rated PV capacity.However,the minimum generation of the large-scale dispersed PV generation is>30%.Furthermore,the research identifies other benefits of dispersing PV generation across the country,viz.,reduction of seasonal variability by adding PV capacity in the southern region,widening of the PV generation span,more room for PV capacity addition,reduction in storage and ramping needs,utilization of hydroelectric potential of the north-east and PV potential of Ladakh,and creating opportunities for sustainable development in rural agrarian regions through agrivoltaics.展开更多
作为可再生能源之一的太阳能光伏发电,是目前当前新能源应用的热点。中国各地区安装了大量光伏电站,但是由于各地太阳辐照强度、日照时间和气温等的差异,光伏电站的实际发电量差异较大。研究分析光伏电站的实际发电量可为实际工程应用...作为可再生能源之一的太阳能光伏发电,是目前当前新能源应用的热点。中国各地区安装了大量光伏电站,但是由于各地太阳辐照强度、日照时间和气温等的差异,光伏电站的实际发电量差异较大。研究分析光伏电站的实际发电量可为实际工程应用提供有效的参考数据,比较分析了三个不同地区且电站容量均为5 k W的光伏电站在2014年和2015年的发电量,并分析了相关的影响因素,希望为光伏电站设计人员和决策人员提供实践数据参考。展开更多
文摘This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.
基金Department of Science and Technology,Government of India,to carry out the research under the Project U.K.India Clean Energy Research Institute(UKICERI)under Grant DST/RCUK/JVCCE/2015/02(C).
文摘India is highly dependent on solar photovoltaics(PV)to harness its vast solar resource potential and combat climate change.However,∼90%of the installed PV capacity in India is concentrated in the top nine states,with the remaining states lagging behind.The research reveals that during monsoons,heavy cloud cover and rain lead to high solar resource variability,intermittency and the risk of very low PV generation,which can result in reliability issues in future PV-dominated electricity grids.Although energy storage can help in overcoming high intermittency,there are multiple challenges associated with it.The novelty of this study lies in demonstrating the benefits of combining multiple PV sites in various regions to mitigate the risks of low PV generation and high variability.The variability of individual sites was found to be up to∼3.5 times higher than the variability of combined generation.During noon,prominent solar park sites like Bhadla and NP Kunta experience a decrease in power generation to values as low as∼10%of the rated PV capacity.However,the minimum generation of the large-scale dispersed PV generation is>30%.Furthermore,the research identifies other benefits of dispersing PV generation across the country,viz.,reduction of seasonal variability by adding PV capacity in the southern region,widening of the PV generation span,more room for PV capacity addition,reduction in storage and ramping needs,utilization of hydroelectric potential of the north-east and PV potential of Ladakh,and creating opportunities for sustainable development in rural agrarian regions through agrivoltaics.
文摘作为可再生能源之一的太阳能光伏发电,是目前当前新能源应用的热点。中国各地区安装了大量光伏电站,但是由于各地太阳辐照强度、日照时间和气温等的差异,光伏电站的实际发电量差异较大。研究分析光伏电站的实际发电量可为实际工程应用提供有效的参考数据,比较分析了三个不同地区且电站容量均为5 k W的光伏电站在2014年和2015年的发电量,并分析了相关的影响因素,希望为光伏电站设计人员和决策人员提供实践数据参考。