Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,...Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.展开更多
基金Financial supports from the National Natural Science Foundation of China(5210060338)National Natural Science Foundation of China(Grant No.52293414)+2 种基金Jiangsu Natural Science Foundation(BK20200731)Science and Technology Program of China Huadian Corporation(CHDKJ22-01-23)Jiangsu graduate research and practice innovation project(18120000312321)。
文摘Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.