Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy savi...Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.展开更多
Coal-fired power operators continue to look for ways to increase the efficiency and extend the working lives of their plants by improving operational flexibility and reducing environmental impact.Two possible options ...Coal-fired power operators continue to look for ways to increase the efficiency and extend the working lives of their plants by improving operational flexibility and reducing environmental impact.Two possible options are explored here:combining solar energy with coal-fired power generation,and cofiring natural gas in coal-fired plants.Both techniques show potential.Depending on the individual circumstances,both can increase the flexibility of a power plant whilst reducing its emissions.In some cases,plant costs could also be reduced.Clearly,any solar-based system is limited geographically to locations that receive consistently high levels of solar radiation.Similarly,although many coal-fired plants already burn limited amounts of gas alongside their coal feed,for cofiring at a significant level,a reliable,affordable supply of natural gas is needed.This is not the case everywhere.But for each technology,there are niche and mainstream locations where the criteria can be met.The need for good solar radiation means that the uptake of coal-solar hybrids will be limited.Cofiring natural gas has wider potential:currently,the largest near-term market appears to be for application to existing coal-fired plants in the USA.However,where gas is available and affordable,potential markets also exist in some other countries.展开更多
This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP...This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP.A portion of the solar energy is adopted for preheating the boiler’s feedwater,and another portion is stored in the TES for the CAES discharging process.Condensate water from the CFPP condenser is used for cooling compressed air during the CAES charging process.The thermodynamic performance of the integrated system under different load conditions is studied.The system operations in a typical day are simulated with EBSILON software.The system enables daily coal saving of 9.88 t and reduces CO_(2)emission by 27.95 t compared with the original CFPP at 100%load.Under partial load conditions,the system enables maximum coal saving of 10.29 t and maximum CO_(2)emission reduction of 29.11 t at 75%load.The system has maximum peak shaving depth of 9.42%under 40%load condition.The potential of the system participating ancillary service is also discussed.It is found that the integration of solar thermal system and CAES system can bring significant ancillary service revenue to a conventional CFPP.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50776028 and 50606010) the Program for New Century Excellent Talents in University (Grant No. NCET-05-0217)
文摘Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.
文摘Coal-fired power operators continue to look for ways to increase the efficiency and extend the working lives of their plants by improving operational flexibility and reducing environmental impact.Two possible options are explored here:combining solar energy with coal-fired power generation,and cofiring natural gas in coal-fired plants.Both techniques show potential.Depending on the individual circumstances,both can increase the flexibility of a power plant whilst reducing its emissions.In some cases,plant costs could also be reduced.Clearly,any solar-based system is limited geographically to locations that receive consistently high levels of solar radiation.Similarly,although many coal-fired plants already burn limited amounts of gas alongside their coal feed,for cofiring at a significant level,a reliable,affordable supply of natural gas is needed.This is not the case everywhere.But for each technology,there are niche and mainstream locations where the criteria can be met.The need for good solar radiation means that the uptake of coal-solar hybrids will be limited.Cofiring natural gas has wider potential:currently,the largest near-term market appears to be for application to existing coal-fired plants in the USA.However,where gas is available and affordable,potential markets also exist in some other countries.
基金The authors would like to thank the support from the Beijing Natural Science Foundation(JQ21010)National Science Fund for Distinguished Young Scholars(51925604)+1 种基金National Key R&D Plan of China(2018YFE0117300)International Partnership Program,Bureau of International Cooperation of Chinese Academy of Sciences(182211KYSB20170029).
文摘This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP.A portion of the solar energy is adopted for preheating the boiler’s feedwater,and another portion is stored in the TES for the CAES discharging process.Condensate water from the CFPP condenser is used for cooling compressed air during the CAES charging process.The thermodynamic performance of the integrated system under different load conditions is studied.The system operations in a typical day are simulated with EBSILON software.The system enables daily coal saving of 9.88 t and reduces CO_(2)emission by 27.95 t compared with the original CFPP at 100%load.Under partial load conditions,the system enables maximum coal saving of 10.29 t and maximum CO_(2)emission reduction of 29.11 t at 75%load.The system has maximum peak shaving depth of 9.42%under 40%load condition.The potential of the system participating ancillary service is also discussed.It is found that the integration of solar thermal system and CAES system can bring significant ancillary service revenue to a conventional CFPP.