The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores f...The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.展开更多
Algeria is a country of vast surface. It occupies a geographical situation which supports the development and the blooming of the use of solar energy. One of the most significant data to carry out an optimal dimension...Algeria is a country of vast surface. It occupies a geographical situation which supports the development and the blooming of the use of solar energy. One of the most significant data to carry out an optimal dimensioning ofa photovoltaic system, is the nature of the solar layer in the site of the establishment of the solar installation, especially the incidental solar energy received in the field of the photovoltaic modules, because this last is necessary for the estimation of the energy quantity delivered by the photovoltaic generator. The objective of this work is to predict the performance of a photovoltaic system (statement) functioning under the weather conditions and the simulation of incidental instantaneous energy on a sensor for the two sites: Tlemcen and Bouzareah. Our simulation is based on a model derived from the empirical models of P. De. Brichambaut and Kasten for a light blue sky, and the knowledge of this energy at every moment per a day or year allows the fine analysis of the collecting system. We established a general program of simulation of energy collected for the various orientations of collecting field of a photovoltaie system.展开更多
Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility....Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000)/Y-TiO2/ poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid 3,4,5-tris(octyloxy)benzyl/ PEDOT:PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.展开更多
Because crystalline silicon thin film (CSiTF) solar cells possess the advantages of crystalline silicon solar cells such as high ef- ficiency and stable performance and those of thin film solar cells such as low cos...Because crystalline silicon thin film (CSiTF) solar cells possess the advantages of crystalline silicon solar cells such as high ef- ficiency and stable performance and those of thin film solar cells such as low cost and so on, it is regarded as the next genera- tion solar cell technology, which is most likely to replace the existing crystalline silicon solar cell technology. In this paper, we performed device simulation on the epitaxial CSiTF solar cell by using PCI D software. In order to make simulation results closer to the actual situation, we adopted a more realistic device structure and parameters. On this basis, we comprehensively and systematically investigated the effect of physical parameters of back surface field (BSF) layer, base and emitter, electrical quality of crystalline silicon active layer, situation of surface passivation, internal recombination and p-n junction leakage on the optoelectronic performance of the epitaxial CSiTF solar cell. Among various factors affecting the efficiency of the epitaxial CSiTF solar cell, we identified the three largest efficiency-affecting parameters. They are the base minority carrier diffusion length, the diode dark saturation current and the front surface recombination velocity in order. Through simulations, we found that the base is not the thicker the better, and the base minority carrier diffusion length must be taken into account when deter- mining the optimal base thickness. When the base minority carrier diffusion length is smaller, the optimal base thickness should be less than or equal to the base minority carrier diffusion length; when the base minority carrier diffusion length is larger, the base minority carrier diffusion length should be at least twice the optimal base thickness. In addition, this paper not only illustrates the simulation results but also explains their changes from the aspect of physical mechanisms. Because epitaxi- al CSiTF solar cells possess a device structure that is similar to crystalline silicon solar cells, the conclusions drawn in this pa- per are also applied to crystalline silicon solar cells to a certain extent, particularly to thin silicon solar cells which are the hot- test research topic at present.展开更多
Tandem structured dye-sensitized solar cells (DSSCs) can take full advantage of sunlight, effectively broadening the absorption spectrum of the cell, resulting in a higher open circuit voltage or short circuit curre...Tandem structured dye-sensitized solar cells (DSSCs) can take full advantage of sunlight, effectively broadening the absorption spectrum of the cell, resulting in a higher open circuit voltage or short circuit current than that of the conventional DSSC with single light absorber. The theoretical maximum efficiency is therefore suggested to be over the Schottky-Queisser limit of 33%. Accord- ingly, tandem design of DSSC is thought to be a promising way to break the performance bottleneck of DSSC. Besides, the tandem designs also broaden the application diversity of DSSC technology, which will accelerate its scale-up industrial application. In this paper, we have reviewed the recent progress on photo-electrochemical applications associated with kinds of tandem designs of DSSCs, in general, which are divided into three kinds: "n- type DSSC + n-type DSSC," "n-type DSSC + p-type DSSC" and "n-type DSSC +other solar conversion devices." The working principles, advantages and chal- lenges of these tandem structured DSSCs have been discussed. Some possible solutions for further studies have been also pointed out together.展开更多
基金the financial support of this work by the Major State Basic Research Development Program(No.2006CB202605)High-Tech Research and Development of China Program(No.2007AA05Z439)+1 种基金the National Nature Science Foundation of China(No.50221201)Innovative Foundation of the Center for Molecular Science,Chinese Academy of Sciences(No.CMS-CX200718).
文摘The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.
文摘Algeria is a country of vast surface. It occupies a geographical situation which supports the development and the blooming of the use of solar energy. One of the most significant data to carry out an optimal dimensioning ofa photovoltaic system, is the nature of the solar layer in the site of the establishment of the solar installation, especially the incidental solar energy received in the field of the photovoltaic modules, because this last is necessary for the estimation of the energy quantity delivered by the photovoltaic generator. The objective of this work is to predict the performance of a photovoltaic system (statement) functioning under the weather conditions and the simulation of incidental instantaneous energy on a sensor for the two sites: Tlemcen and Bouzareah. Our simulation is based on a model derived from the empirical models of P. De. Brichambaut and Kasten for a light blue sky, and the knowledge of this energy at every moment per a day or year allows the fine analysis of the collecting system. We established a general program of simulation of energy collected for the various orientations of collecting field of a photovoltaie system.
基金This work was financially supported by National Natural Science Foundation of China (No. 61301036), Shanghai Science and Technology Rising Star Project (No. 17QA1404700), Youth Innovation Promotion Association CAS (No. 2014226), Shanghai Key Basic Research Project (No. 16JC1402300), and the Major State Research Development Program of China (No. 2016YFA0203000).
文摘Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000)/Y-TiO2/ poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid 3,4,5-tris(octyloxy)benzyl/ PEDOT:PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.
基金supported by the National Natural Science Foundation of China (Grant No. 50802118)Science & Technology Research Project of Guangdong Province (Grant Nos. 2011A032304001,2010B090400020)the Fundamental Research Funds for the Central Universities (Grant No. 2011300003161469)
文摘Because crystalline silicon thin film (CSiTF) solar cells possess the advantages of crystalline silicon solar cells such as high ef- ficiency and stable performance and those of thin film solar cells such as low cost and so on, it is regarded as the next genera- tion solar cell technology, which is most likely to replace the existing crystalline silicon solar cell technology. In this paper, we performed device simulation on the epitaxial CSiTF solar cell by using PCI D software. In order to make simulation results closer to the actual situation, we adopted a more realistic device structure and parameters. On this basis, we comprehensively and systematically investigated the effect of physical parameters of back surface field (BSF) layer, base and emitter, electrical quality of crystalline silicon active layer, situation of surface passivation, internal recombination and p-n junction leakage on the optoelectronic performance of the epitaxial CSiTF solar cell. Among various factors affecting the efficiency of the epitaxial CSiTF solar cell, we identified the three largest efficiency-affecting parameters. They are the base minority carrier diffusion length, the diode dark saturation current and the front surface recombination velocity in order. Through simulations, we found that the base is not the thicker the better, and the base minority carrier diffusion length must be taken into account when deter- mining the optimal base thickness. When the base minority carrier diffusion length is smaller, the optimal base thickness should be less than or equal to the base minority carrier diffusion length; when the base minority carrier diffusion length is larger, the base minority carrier diffusion length should be at least twice the optimal base thickness. In addition, this paper not only illustrates the simulation results but also explains their changes from the aspect of physical mechanisms. Because epitaxi- al CSiTF solar cells possess a device structure that is similar to crystalline silicon solar cells, the conclusions drawn in this pa- per are also applied to crystalline silicon solar cells to a certain extent, particularly to thin silicon solar cells which are the hot- test research topic at present.
文摘Tandem structured dye-sensitized solar cells (DSSCs) can take full advantage of sunlight, effectively broadening the absorption spectrum of the cell, resulting in a higher open circuit voltage or short circuit current than that of the conventional DSSC with single light absorber. The theoretical maximum efficiency is therefore suggested to be over the Schottky-Queisser limit of 33%. Accord- ingly, tandem design of DSSC is thought to be a promising way to break the performance bottleneck of DSSC. Besides, the tandem designs also broaden the application diversity of DSSC technology, which will accelerate its scale-up industrial application. In this paper, we have reviewed the recent progress on photo-electrochemical applications associated with kinds of tandem designs of DSSCs, in general, which are divided into three kinds: "n- type DSSC + n-type DSSC," "n-type DSSC + p-type DSSC" and "n-type DSSC +other solar conversion devices." The working principles, advantages and chal- lenges of these tandem structured DSSCs have been discussed. Some possible solutions for further studies have been also pointed out together.