期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Simulation design of P–I–N-type all-perovskite solar cells with high efficiency 被引量:2
1
作者 Hui-Jing Du Wei-Chao Wang Yi-Fan Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期529-535,共7页
According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an... According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. 展开更多
关键词 all-perovskite solar cells device simulation band matching photovoltaic performance
下载PDF
Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell:AMPS-1D Simulation Study 被引量:5
2
作者 Bushra Mohamed Omer 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期216-220,共5页
The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential vale... The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail. 展开更多
关键词 Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction solar cell:AMPS-1D Simulation Study HT
下载PDF
Simulation of double junction In0.46Ga0.54N/Si tandem solar cell 被引量:1
3
作者 M.Benaicha L.Dehimi Nouredine Sengouga 《Journal of Semiconductors》 EI CAS CSCD 2017年第4期33-37,共5页
A comprehensive study of high efficiency In(0.46)Ga(0.54)N/Si tandem solar cell is presented.A tunnel junction(TJ) was needed to interconnect the top and bottom sub-cells.Two TJ designs,integrated within this ta... A comprehensive study of high efficiency In(0.46)Ga(0.54)N/Si tandem solar cell is presented.A tunnel junction(TJ) was needed to interconnect the top and bottom sub-cells.Two TJ designs,integrated within this tandem:GaAs(n^+)/GaAs(p^+) and In(0.5)Ga(0.5)N(n^+)/Si(p^+) were considered.Simulations of GaAs(n^+)/GaAs(p^+)and In(0.5)Ga(0.5)N(n^+)/Si(p^+) TJ I-V characteristics were studied for integration into the proposed tandem solar cell.A comparison of the simulated solar cell I-V characteristics under 1 sun AM1.5 spectrum was discussed in terms of short circuit current density(J(SC)),open circuit voltage(V(OC)),fill factor(FF) and efficiency(η) for both tunnel junction designs.Using GaAs(n^+)/GaAs(p^+) tunnel junction,the obtained values of J(SC) = 21.74 mA/cm-2,V(OC)= 1,81 V,FF = 0.87 and η=34.28%,whereas the solar cell with the In(0.5)Ga(0.5)N/Si tunnel junction reported values of J(SC)= 21.92 mA/cm-2,V(OC)= 1.81 V,FF = 0.88 and η= 35.01%.The results found that required thicknesses for GaAs(n^+)/GaAs(p^+) and In(0.5)Ga(0.5)N(n^+)/Si(p^+) tunnel junctions are around 20 nm,the total thickness of the top InGaN can be very small due to its high optical absorption coefficient and the use of a relatively thick bottom cell is necessary to increase the conversion efficiency. 展开更多
关键词 InGaN/Si tandem solar cells tunnel junctions simulation
原文传递
Evaluating electron induced degradation of triple-junction solar cell by numerical simulation 被引量:1
4
作者 LI Jun-wei WANG Zu-jun +3 位作者 SHI Cheng-ying XUE Yuan-yuan NING Hao XU Rui 《Optoelectronics Letters》 EI 2021年第5期276-282,共7页
In this paper,the degradation related parameters of GaInP/GaAs/Ge triple-junction solar cell induced by electron irradiation are carried out by numerical simulation.The degradation results of short-circuit current,ope... In this paper,the degradation related parameters of GaInP/GaAs/Ge triple-junction solar cell induced by electron irradiation are carried out by numerical simulation.The degradation results of short-circuit current,open-circuit voltage,maximum power have been investigated,and the degradation mechanism is analyzed.Combining the degradation results,the degradation of normalized parameters versus displacement damage dose is obtained.The results show that the degradation increases with the increase of the electron fluence and electron irradiation energy.The degradation normalized related parameters versus displacement damage dose can be characterized by a special curve that is not affected by the type of irradiated particles.By calculating the annual displacement damage dose and the on-orbit operation time of special space orbit,the degradation of normalized parameters can be obtained with the fitting curve in the simulation.The study will provide an approach to estimate the radiation damage of triple-junction solar cell induced by space particle irradiation. 展开更多
关键词 Evaluating electron induced degradation of triple-junction solar cell by numerical simulation
原文传递
Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells
5
作者 Shihua Huang Qiannan Li +2 位作者 Dan Chi Xiuqing Meng Lü He 《Journal of Semiconductors》 EI CAS CSCD 2017年第4期68-72,共5页
Taking into account defect density in WSe2,interface recombination between ZnO and WSe2,we presented a simulation study of ZnO/crystalline WSe2 heterojunction(HJ) solar cell using wxAMPS simulation software.The opti... Taking into account defect density in WSe2,interface recombination between ZnO and WSe2,we presented a simulation study of ZnO/crystalline WSe2 heterojunction(HJ) solar cell using wxAMPS simulation software.The optimal conversion efficiency 39.07%for n-ZnO/p-c-WSe2 HJ solar cell can be realized without considering the impact of defects.High defect density(〉 1.0×10^11cm^-2) in c-WSe2 and large trap cross-section(〉 1.0×10^-10cm^2) have serious impact on solar cell efficiency.A thin p-WSe2 layer is intentionally inserted between ZnO layer and c-WSe2 to investigate the effect of the interface recombination.The interface properties are very crucial to the performance of ZnO/c-WSe2 HJ solar cell.The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency. 展开更多
关键词 simulation heterojunction solar cells transport properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部